【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.,.

1)求證:;

2)求二面角的正弦值.

【答案】(1)見解析;(2)

【解析】

1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;

2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運算即可.

1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.

由題意易知,所以,

因為,所以平面,

平面,所以.

2)設,,由已知可得:平面平面

所以,同理可得:,所以四邊形為平行四邊形,

所以的中點,的中點,所以平行且相等,從而平面

,所以,兩兩垂直,如圖,建立空間直角坐標系,

,由平面幾何知識,得.

,,,

所以,.

設平面的法向量為,由,可得,

,則,,所以.同理,平面的一個法向量為.

設平面與平面所成角為,

,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐如圖的展開圖如圖2,其中四邊形ABCD為邊長等于的正方形,均為正三角形.

(1)證明:平面平面ABC;

(2)若MPC的中點,點N在線段PA上,且滿足,求直線MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面有一個公共點,直線滿足:,則直線不可能滿足以下哪種關系(

A.兩兩平行B.兩兩異面C.兩兩垂直D.兩兩相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點為棱的中點.

(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;

(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程為,以極點為原點,極軸所在直線為軸建立直角坐標系.過點作傾斜角為的直線交曲線,兩點.

1)求曲線的直角坐標方程,并寫出直線的參數(shù)方程;

2)過點的另一條直線關于直線對稱,且與曲線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若函數(shù)的圖象經過變換后所得的圖象對應的函數(shù)與的值域相同,則稱變換的同值變換,下面給出了四個函數(shù)與對應的變換:①, 將函數(shù)的圖象關于直線作對稱變換;②, 將函數(shù)的圖象關于軸作對稱變換;③, 將函數(shù)的圖象關于點作對稱變換;④,將函數(shù)的圖象關于點作對稱變換.其中的同值變換的有__________(寫出所有符合題意的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的側面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,平面底面,.

1)求證:平面與平面不垂直;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)滿足:(1)對任意,恒有成立;(2)當時,.給出如下結論:

①對任意,有;

②函數(shù)的值域為

③存在,使得;

函數(shù)在區(qū)間上單調遞減的充要條件是存在,使得”.

上述結論正確有(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案