在△ABC中,若
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)在上述△ABC中,若角C的對邊,求該三角形內切圓半徑的取值范圍。

(Ⅰ)直角三角形;(Ⅱ)

解析試題分析:(Ⅰ)先利用正弦定理和余弦定理把條件中關于角的等式轉化為關于邊的等式,再整理化簡,通過最終的等式可以判斷三角形的形狀.
(Ⅱ)利用(Ⅰ)的結果和切線的性質把內切圓的半徑用三角形的三條邊表示出來,再把三角邊轉化為角的形式,從而把問題轉化求三角函數(shù)的值域問題.
試題分析:(Ⅰ)根據(jù)正弦定理,原式可化為:,
再由余弦定理,上式可化為: ,
 
消去整理得:,所以 即△ABC為直角三角形.
(Ⅱ)如圖,中,的內切圓分別與邊相切與點

由切線長定理知: 
 
 四邊形中, 
四邊形為正方形, 
的半徑 
若設內切圓半徑為,則 .
,,

 
 
考點:1.正弦定理和余弦定理的應用;2.直角三角形內切圓的性質;3.三角恒等變換;4.三角函數(shù)的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知中,內角的對邊的邊長為,且
(1)求角的大;
(2)若,求出的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,,(,且為常數(shù)),設函數(shù),若的最大值為1.
(1)求的值,并求的單調遞增區(qū)間;
(2)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,內角的對邊分別為,并且.
(1)求角的大;
(2)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的對邊,
(1)求
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的最小值和最大值
(2)設三角形角的對邊分別為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別是,已知.
(Ⅰ)求;
(Ⅱ)若,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的內角、的對邊分別為、,且滿足
(1)求角的大;
(2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案