【題目】現(xiàn)有正整數(shù)構(gòu)成的數(shù)表如下:
第一行:1
第二行:12
第三行:1123
第四行:11211234
第五行:1121123112112345
…
第k行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,…,直至按原序抄寫第k﹣1行,最后添上數(shù)k.(如第四行,先抄寫第一行的數(shù)1,接著按原序抄寫第二行的數(shù)1,2,接著按原序抄寫第三行的數(shù)1,1,2,3,最后添上數(shù)4).將按照上述方式寫下的第n個數(shù)記作(如,…),用表示數(shù)表第行的數(shù)的個數(shù),求數(shù)列{}的前項和=____
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S-ABC中,SA ⊥底面ABC,AC=AB=SA=2,AC ⊥AB,D,E分別是AC,BC的中點,F在SE上,且SF=2FE.
(Ⅰ)求異面直線AF與DE所成角的余弦值;
(Ⅱ)求證:AF⊥平面SBC;
(Ⅲ)設(shè)G為線段DE的中點,求直線AG與平面SBC所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓臺的上下底面半徑分別是2,5,且側(cè)面面積等于兩底面面積之和,求該圓臺的母線長.
(2)有一個正四棱臺形狀的油槽,可以裝油190L,假如它的兩底面長分別等于60cm和40cm,求它的深度為多少cm?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知z為虛數(shù),z+為實數(shù).
(1)若z-2為純虛數(shù),求虛數(shù)z.
(2)求|z-4|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,離心率,且短軸長為4.
求橢圓的方程;
已知,,若直線l與圓相切,且交橢圓E于C、D兩點,記的面積為,記的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在2013年的自主招生考試成績中隨機抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)?/span>“優(yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率,并補全頻率分布直方圖;
(2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù)與平均數(shù);
(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,,為的中點
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)為線段上一點,,若直線與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于方程為的曲線給出以下三個命題:
(1)曲線關(guān)于原點對稱;(2)曲線關(guān)于軸對稱,也關(guān)于軸對稱,且軸和軸是曲線僅有的兩條對稱軸;(3)若分別在第一、第二、第三、第四象限的點,都在曲線上,則四邊形每一條邊的邊長都大于2;
其中正確的命題是( )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com