考點(diǎn):數(shù)列與函數(shù)的綜合
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(1)由題意,先求a
1,再化簡(jiǎn)6(S
n-S
n-1)=(1-2a
n)-(1-2a
n-1),從而可得a
n=
•(
)
n-1=
•(
)
n,
(2)先化簡(jiǎn)
log•()n=2n+1,從而可得b
n=(-1)
n-1•
,分n為偶數(shù)、奇數(shù)討論即可.
解答:
解:(1)∵6S
n=1-2a
n,
∴當(dāng)n=1時(shí),6a
1=1-2a
1,解得,a
1=
,
當(dāng)n≥2時(shí),6(S
n-S
n-1)=(1-2a
n)-(1-2a
n-1),
即a
n=
a
n-1,
∴數(shù)列{a
n}是以
為首項(xiàng),
為公比的等比數(shù)列,
∴a
n=
•(
)
n-1=
•(
)
n,
(2)∵
log•()n=2n+1,
故b
n=(-1)
n-1•
=(-1)
n-1•
,
∵當(dāng)n為偶數(shù)時(shí),
b
n-1+b
n=
-
=
=
-
,
故T
n=b
1+b
2+b
3+b
4+…+b
n-1+b
n=(b
1+b
2)+(b
3+b
4)+…+(b
n-1+b
n)
=
-
+
-
+…+
-
=
-
=
,
當(dāng)n為奇數(shù)時(shí),
T
n=b
1+b
2+b
3+b
4+…+b
n-2+b
n-1+b
n=(b
1+b
2)+(b
3+b
4)+…+(b
n-2+b
n-1)+b
n=
-
+
-
+…+
-
+
=
-
+
=
.
故T
n=
n∈N
*.
點(diǎn)評(píng):本題考查了數(shù)列的通項(xiàng)公式及數(shù)列前n項(xiàng)和的求法,同時(shí)考查了分類(lèi)討論的數(shù)學(xué)思想,屬于難題.