13.已知$A(\sqrt{3},2),F(xiàn)(\sqrt{3},0)$,P是橢圓$\frac{x^2}{4}+{y^2}=1$上的任一點,則|PA|-|PF|的取值范圍是[0,2].

分析 利用橢圓的定義以及三角形的性質推出結果即可.

解答 解:|PA|-|PF|=(|PA|+|PF1|)-2a≥|AF1|-4=0,

P為線段AF1與橢圓的交點時取“=”.|PA|-|PF|≤|AF|=2,P為AF延長線與橢圓的交點時取“=”.
故答案為:[0,2].

點評 本題考查橢圓的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.計算:($\frac{1}{3}$)-1+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.不等式$\frac{1}{x-2}$≤1的解集是(-∞,2)∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線y=mx+1與曲線x=2+$\sqrt{1-{y}^{2}}$的圖象始終有交點,則m的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若命題“p且q”為假,且p為真,則( 。
A.“p或q”為假B.q為假C.q為真D.不能判斷q的真假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.規(guī)定[t]為不超過t的最大整數(shù),例如[12.5]=12,[-3.5]=-4,對任意的實數(shù)x,令f1(x)=[4x],g(x)=4x-[4x],進一步令f2(x)=f1[g(x)].
(1)若x=$\frac{7}{16}$,分別求f1(x) 和f2(x);
(2)若f1(x)=1,f2(x)=3同時滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知N是自然數(shù)集,在數(shù)軸上表示出集合A,如果所示,則A∩N=( 。
A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρcos2θ=2sinθ,它在點$M(2\sqrt{2},\frac{π}{4})$處的切線為直線l.
(1)求直線l的直角坐標方程;
(2)已知點P為橢圓$\frac{x^2}{3}+\frac{y^2}{4}$=1上一點,求點P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.(x2-$\frac{1}{x}$)9的二項展開式中,含x3項的系數(shù)是-126.

查看答案和解析>>

同步練習冊答案