1.已知棱長等于$2\sqrt{3}$的正方體ABCD-A1B1C1D1,它的外接球的球心為O,點E是AB的中點,則過點E的平面截球O的截面面積的最小值為(  )
A.πB.C.D.

分析 當(dāng)過球內(nèi)一點E的截面與OE垂直時,截面面積最小可求截面半徑,即可求出過點E的平面截球O的截面面積的最小值.

解答 解:棱長等于$2\sqrt{3}$的正方體ABCD-A1B1C1D1,它的外接球的半徑為3,|OE|=$\sqrt{6}$
當(dāng)過點E的平面與OE垂直時,截面面積最小,r=$\sqrt{9-6}$=$\sqrt{3}$,S=π×3=3π,
故選:C.

點評 本題考查過點E的平面截球O的截面面積的最小值及接體問題,找準(zhǔn)量化關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.執(zhí)行如程序圖:若輸入m=1995,n=228,則輸出m的值為57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)若EC=2,F(xiàn)D=3,求平面ADF與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,則a的取值范圍是( 。
A.(-$\frac{1}{e}$,1)B.(-∞,$\frac{1}{e}$)C.(-1,+∞)D.(-$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}$x2-2ax+lnx(a∈R),x∈(1,+∞).
(1)若函數(shù)f(x)有且只有一個極值點,求實數(shù)a的取值范圍;
(2)對于函數(shù)f(x)、f1(x)、f2(x),若對于區(qū)間D上的任意一個x,都有f1(x)<f(x)<f2(x),則稱函數(shù)f(x)是函數(shù)f1(x)、f2(x)在區(qū)間D上的一個“分界函數(shù)”.已知f1(x)=(1-a2)lnx,f2(x)=(1-a)x2,問是否存在實數(shù)a,使得f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數(shù)”?若存在,求實數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,直四棱柱ABCD-A1B1C1D1內(nèi)接于半徑為$\sqrt{3}$的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時,AB的長是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD交于點F,若$\overrightarrow{AC}$=$\overrightarrow a$,$\overrightarrow{BD}$=$\overrightarrow b$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$B.$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{4}$$\overrightarrow b$C.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$D.$\frac{1}{2}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)A,B,C,D四點是半徑為3的球面上四點,則三棱錐A-BCD的最大體積為$8\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個四面體的某個頂點上的三條棱兩兩垂直,這三條棱的長度分別為1、2、3,則這三條棱與此四面體的不經(jīng)過這個頂點的一個面所成角大小的余弦的最大值為$\frac{3\sqrt{5}}{7}$.

查看答案和解析>>

同步練習(xí)冊答案