分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f(x)有且只有一個極值點,得到x2-2ax+1<0恒成立,求出a的范圍即可;
(2)根據(jù)“分界函數(shù)”的定義,只需x∈(1,+∞)時,f(x)-(1-a)x2<0恒成立且f(x)-(1-a2)lnx>0恒成立,判斷函數(shù)的單調(diào)性,求出a的范圍即可.
解答 解:(1)f′(x)=$\frac{{x}^{2}-2ax+1}{x}$,x∈(1,+∞),
令g(x)=x2-2ax+1,由題意得:g(x)在[1,+∞)有且只有1個零點,
∴g(1)<0,解得:a>1;
(2)若f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數(shù)”,
則x∈(1,+∞)時,f(x)-(1-a)x2<0恒成立且f(x)-(1-a2)lnx>0恒成立,
令h(x)=f(x)-(1-a)x2=(a-$\frac{1}{2}$)x2-2ax+lnx,
則h′(x)=$\frac{[(2a-1)x-1](x-1)}{x}$,
①2a-1≤0即a≤$\frac{1}{2}$時,當(dāng)x∈(1,+∞)時,h′(x)<0,h(x)遞減,且h(1)=-$\frac{1}{2}$-a,
∴h(1)≤0,解得:-$\frac{1}{2}$≤a≤$\frac{1}{2}$;
②2a-1>0即a>$\frac{1}{2}$時,y=(a-$\frac{1}{2}$)x2-2ax的圖象開口向上,
存在x0>1,使得(a-$\frac{1}{2}$)${{x}_{0}}^{2}$-2ax0>0,
從而h(x0)>0,h(x)<0在(1,+∞)不恒成立,
令m(x)=f(x)-(1-a2)lnx=$\frac{1}{2}$x2-2ax+a2lnx,
則m′(x)=$\frac{{(x-a)}^{2}}{x}$≥0,m(x)在(1,+∞)遞增,
由f(x)-(1-a2)lnx>0恒成立,得:m(1)≥0,解得:a≤$\frac{1}{4}$,
綜上,a∈[-$\frac{1}{2}$,$\frac{1}{4}$]時,f(x)是函數(shù)f1(x)、f2(x)在區(qū)間(1,+∞)上的一個“分界函數(shù)”.
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查新定義問題,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=xtanx | B. | f(x)=xex | C. | f(x)=x+2lnx | D. | f(x)=x-sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com