分析 (1)由等差數(shù)列通項公式和前n項和公式列出方程組,求出首項與公差,由此能求出數(shù)列{an}的通項公式.
(2)由bn=$\frac{1}{({a}_{n}-6)({a}_{n}-4)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用裂項求和法能求出數(shù)列{bn}的前n項和.
解答 解:(1)∵等差數(shù)列{an}的前5項的和為55,且a6+a7=36,
∴$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=55}\\{{a}_{1}+5d+{a}_{1}+6d=36}\end{array}\right.$,
解得a1=7,d=2,
∴數(shù)列{an}的通項公式an=7+(n-1)×2=2n+5.
(2)bn=$\frac{1}{({a}_{n}-6)({a}_{n}-4)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項和:
Sn=$\frac{1}{2}(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意裂項求和法的合理運(yùn)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4) | B. | (4,+∞) | C. | (-∞,-4$\sqrt{2}$) | D. | (4$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≥0 | B. | k≤0 | C. | k>0 | D. | k<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 19π | B. | 30π | C. | 38π | D. | $\frac{{19\sqrt{38}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com