2.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是(  )
A.B.C.D.

分析 觀察函數(shù)y=f′(x)的圖象知,f(x)在(-1,1)上是增函數(shù),在-1與1之間,導(dǎo)函數(shù)的值是先增大后減小,故在-1與1之間,原函數(shù)圖象切線的斜率是先增大后減小,從而求解.

解答 解:觀察函數(shù)y=f′(x)的圖象知,f(x)在(-1,1)上是增函數(shù)
在-1與1之間,導(dǎo)函數(shù)的值是先增大后減小
故在-1與1之間,原函數(shù)圖象切線的斜率是先增大后減小,
故選:B.

點評 本題主要考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,同時考查了識圖能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)G分別是BC,PC,PB的中點.
(1)證明:AE⊥PD;
(2)設(shè)平面PAB∩平面PCD=1,求證:CD∥1;
(3)設(shè)H為棱PD上的動點,若EH與平面PAD所成的最大角的正切值為$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=a+bcosx+csinx的圖象經(jīng)過(0,1),($\frac{π}{2}$,1)兩點.
(1)利用公式sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)將f(x)表示為Asin(ωx+φ)+B的形式,并求a=2時f(x)在[0,$\frac{π}{2}$]上的值域;
(2)若不等式|f(x)|≤2,在[0,$\frac{π}{2}$]上恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a>1時,若在[0,$\frac{π}{2}$]上存在x使不等式f(x+$\frac{π}{4}$)f(x-$\frac{π}{4}$)+a2-4a+2≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立坐標(biāo)系,已知直線l上兩點M、N的極坐標(biāo)分別為(3,π),($\sqrt{3}$,$\frac{π}{2}$).
(Ⅰ)設(shè)P為線段MN上的動點,求線段OP取得最小值時,點P的直角坐標(biāo);
(Ⅱ)求以MN為直徑的圓C的參數(shù)方程,并求在(Ⅰ)的條件下直線OP與圓C相交所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知直線PA與半圓O切于點A,PO交半圓于B,C兩點,AD⊥PO于點D.
(Ⅰ)求證:∠PAB=∠BAD;
(Ⅱ)求證:PB•CD=PC•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中g(shù)(x)的函數(shù)圖象在點(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)若a≤0,判斷函數(shù)g(x)的單調(diào)性;
(Ⅲ)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2)(x1<x2),求證:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖為函數(shù)f(x)的圖象,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則不等式$\frac{f'(x)}{x}$<0的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),\;x>2.\end{array}$,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,22015]內(nèi)的所有零點的和為$\frac{3}{2}$•(22015-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f'(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≠0時,x•f'(x)<0恒成立,對于正數(shù)a,b有:A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{2ab}{a+b}$),則A、B、C的大小關(guān)系為( 。
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

查看答案和解析>>

同步練習(xí)冊答案