(1)已知函數(shù)f(2x)=x2+x,求函數(shù)f(x)和f(x+1)的解析式.
(2)討論函數(shù)f(x)=x+數(shù)學(xué)公式在[2,+∞)上的單調(diào)性.

解:(1)令:2x=t,
則有x=t,
∴f(t)=t2+t
∴f(x)=x2+x
f(x+1)=(x+1)2+(x+1)=x2+x+;
(2)由于x∈[2,+∞),則≥0恒成立
故函數(shù)f(x)=x+在[2,+∞)上的單調(diào)遞增.
分析:(1)用換元法求解,令:2x=t,則有x=t,可求得f(t),再令t=x,可求得f(x),最后求得f(x+1)的解析式;
(2)利用導(dǎo)數(shù)得到函數(shù)在[2,+∞)上的單調(diào)性.
點(diǎn)評(píng):本題主要考查求函數(shù)解析式,常用方法有待定系數(shù)法,配方法,換元法,代換法,方程法等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
3
x3-
3
2
x2+(a+1)x+1
,其中a為實(shí)數(shù).
(1)已知函數(shù)f(x)在x=1處取得極值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1對(duì)任意a∈(0,+∞)都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(2-a)x-3a(x<1)
logax(x≥1)
是R上的增函數(shù),那么實(shí)數(shù)a的范圍( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時(shí),
f(x)的值域是[a,b],則稱(chēng)函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱(chēng)為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=
x
是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實(shí)數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•天津模擬)已知函數(shù)f(x)=
2,x>1
(x-1)2+2,x≤1
,則不等式f(1-x2)>f(2x)的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫(xiě)出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線(xiàn)y=x-
2
x
上存在兩個(gè)不同點(diǎn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求出其坐標(biāo);若曲線(xiàn)y=x+
p
x
(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

同步練習(xí)冊(cè)答案