9.已知函數(shù)f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$(x∈R),則f(x)的最小值是$\frac{7}{6}$.

分析 利用絕對(duì)值的幾何意義,化簡函數(shù),即可求出f(x)的最小值.

解答 解:x≤1時(shí),f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$=-$\frac{11}{6}$x+3≥$\frac{7}{6}$;
1<x≤2時(shí),f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$=$\frac{1}{6}$x+1∈[$\frac{7}{6}$,$\frac{4}{3}$];
2<x<3時(shí),f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$=$\frac{7}{6}$x-1∈($\frac{4}{3}$,$\frac{5}{2}$);
x≥3時(shí),f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$=$\frac{11}{6}$x-3≥$\frac{5}{2}$;
∴f(x)的最小值是$\frac{7}{6}$.
故答案為:$\frac{7}{6}$.

點(diǎn)評(píng) 本題考查函數(shù)的最小值,考查學(xué)生的計(jì)算能力,正確運(yùn)用絕對(duì)值的幾何意義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四種說法正確的是( 。
①函數(shù)f(x)的定義域是R,則“?x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件
②命題“?x∈R,($\frac{1}{3}$)x>0”的否定是“?x∈R,($\frac{1}{3}$)x≤0”
③命題“若x=2,則x2-3x+2=0”的逆否命題是“若x2-3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù).則p∧q為真命題.
A.①②③④B.①③C.①③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購物平臺(tái)的銷售業(yè)績高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的5次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X:
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若曲線C1和C2相交于A,B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2|x-1|-a,g(x)=-|2x+m|,a,m∈R,若關(guān)于x的不等式g(x)≥-1的整數(shù)解有且僅有一個(gè)值為-2.
(1)求整數(shù)m的值;
(2)若函數(shù)y=f(x)的圖象恒在函數(shù)y=$\frac{1}{2}$g(x)的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求實(shí)數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)m,n,p滿足m+n+p=$\frac{3}{2}$M,求證:mn+np+pm≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求不等式|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|≤M(a2+b2+c22對(duì)所有實(shí)數(shù)a,b,c都成立的最小的M值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則b的取值范圍是(2-$\sqrt{2}$,2+$\sqrt{2}$),a的取值范圍是(-∞,ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義集合A,B之間的運(yùn)算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},則集合A*B中的最大元素為5,集合A*B的所有子集的個(gè)數(shù)為16.

查看答案和解析>>

同步練習(xí)冊(cè)答案