分析 (1)把圓C的方程化為標(biāo)準(zhǔn)方程,寫出圓心和半徑;
(2)設(shè)出直線l的方程,與圓C的方程組成方程組,消去y得關(guān)于x的一元二次方程,由根與系數(shù)的關(guān)系求出$\frac{1}{x_1}+\frac{1}{x_2}$的值;
(3)解法一:設(shè)出直線m的方程,由圓心C到直線m的距離,寫出△CDE的面積,利用基本不等式求出最大值,從而求出對(duì)應(yīng)直線方程;
解法二:利用幾何法得出CD⊥CE時(shí)△CDE的面積最大,再利用點(diǎn)到直線的距離求出對(duì)應(yīng)直線m的方程.
解答 解:(1)圓C:x2+y2+2x-3=0,配方得(x+1)2+y2=4,
則圓心C的坐標(biāo)為(-1,0),圓的半徑長(zhǎng)為2;
(2)設(shè)直線l的方程為y=kx,
聯(lián)立方程組$\left\{\begin{array}{l}{x^2}+{y^2}+2x-3=0\\ y=kx\end{array}\right.$,
消去y得(1+k2)x2+2x-3=0,
則有:${x_1}+{x_2}=-\frac{2}{{1+{k^2}}},{x_1}{x_2}=-\frac{3}{{1+{k^2}}}$;
所以$\frac{1}{x_1}+\frac{1}{x_2}=\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}=\frac{2}{3}$為定值;
(3)解法一:設(shè)直線m的方程為y=kx+b,則圓心C到直線m的距離$d=\frac{|b-1|}{{\sqrt{2}}}$,
所以$|DE|=2\sqrt{{R^2}-{d^2}}=2\sqrt{4-{d^2}}$,
${S_{△CDE}}=\frac{1}{2}|DE|•d=\sqrt{4-{d^2}}•d$≤$\frac{{(4-{d^2})+{d^2}}}{2}=2$,
當(dāng)且僅當(dāng)$d=\sqrt{4-{d^2}}$,即$d=\sqrt{2}$時(shí),△CDE的面積最大,
從而$\frac{|b-1|}{{\sqrt{2}}}=\sqrt{2}$,解之得b=3或b=-1,
故所求直線方程為x-y+3=0或x-y-1=0.
解法二:由(1)知|CD|=|CE|=R=2,
所以${S_{△CDE}}=\frac{1}{2}|CD|•|CE|•sin∠DCE=2sin∠DCE$≤2,
當(dāng)且僅當(dāng)CD⊥CE時(shí),△CDE的面積最大,此時(shí)$|DE|=2\sqrt{2}$;
設(shè)直線m的方程為y=x+b,則圓心C到直線m的距離$d=\frac{|b-1|}{{\sqrt{2}}}$,
由$|DE|=2\sqrt{{R^2}-{d^2}}=2\sqrt{4-{d^2}}=2\sqrt{2}$,得$d=\sqrt{2}$,
由$\frac{|b-1|}{{\sqrt{2}}}=\sqrt{2}$,得b=3或b=-1,
故所求直線方程為x-y+3=0或x-y-1=0.
點(diǎn)評(píng) 本題考查了直線與圓的方程的應(yīng)用問(wèn)題,也考查了點(diǎn)到直線的距離以及方程組的應(yīng)用問(wèn)題,考查了轉(zhuǎn)化思想以及根與系數(shù)的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
ξ | -2 | -1 | 0 | 1 | 2 | 3 |
P | $\frac{1}{12}$ | $\frac{3}{12}$ | $\frac{4}{12}$ | $\frac{1}{12}$ | $\frac{2}{12}$ | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,3) | B. | (-$\frac{1}{2}$,$\frac{3}{2}$) | C. | (-$\frac{1}{5}$,$\frac{3}{5}$) | D. | (-$\frac{1}{7}$,$\frac{3}{7}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 數(shù)陣中第一列的數(shù)全是0當(dāng)且僅當(dāng)A1=∅ | |
B. | 數(shù)陣中第n列的數(shù)全是1當(dāng)且僅當(dāng)An=S | |
C. | 數(shù)陣中第j行的數(shù)字和表明集合Aj含有幾個(gè)元素 | |
D. | 數(shù)陣中所有的n2個(gè)數(shù)字之和不超過(guò)n2-n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com