8.已知隨機(jī)變量ξ的分布列為
ξ-2-10123
P$\frac{1}{12}$$\frac{3}{12}$$\frac{4}{12}$$\frac{1}{12}$$\frac{2}{12}$$\frac{1}{12}$
若P(ξ2>x)=$\frac{1}{12}$,則實(shí)數(shù)x的取值范圍是[4,9).

分析 由隨機(jī)變量ξ的分布列,知ξ2的可能取值為0,1,4,9,分別求出相應(yīng)的概率,由此利用P(ξ2>x)=$\frac{1}{12}$,即可求出實(shí)數(shù)x的取值范圍.

解答 解:由隨機(jī)變量ξ的分布列,知:
ξ2的可能取值為0,1,4,9,
且P(ξ2=0)=$\frac{4}{12}$,
P(ξ2=1)=$\frac{3}{12}$+$\frac{1}{12}$=$\frac{4}{12}$,
P(ξ2=4)=$\frac{1}{12}$+$\frac{2}{12}$=$\frac{3}{12}$,
P(ξ2=9)=$\frac{1}{12}$,
∵P(ξ2>x)=$\frac{1}{12}$,
∴實(shí)數(shù)x的取值范圍是[4,9).
故答案為:[4,9).

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的分布列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.?dāng)?shù)列{an}滿(mǎn)足a1=$\frac{1}{4}$,an+1=$\frac{1}{4-4{a}_{n}}$,若不等式$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{n+2}}{{a}_{n+1}}$<n+λ對(duì)任何正整數(shù)n恒成立,則實(shí)數(shù)λ的最小值為(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(表示1cm),圖中粗線畫(huà)出的是某零件的三視圖,則該幾何體的體積是( 。
A.5B.5.5C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某個(gè)服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利潤(rùn)y/元與該周每天銷(xiāo)售這種服裝件數(shù)x/件之間的數(shù)據(jù)如表:
X3456789
y66697381899091
已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求$\overline x$,$\overline y$;
(2)畫(huà)出散點(diǎn)圖;
(3)判斷純利潤(rùn)y與每天銷(xiāo)售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在如圖所示的長(zhǎng)方體ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),則點(diǎn)B1的坐標(biāo)為(a,b,c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.由以下這組數(shù)據(jù)得線性回歸方程一定過(guò)點(diǎn)(  )
x-4-3-2-11234
  y3.62.51.9-0.3-1.4-2-2.3-2
A.(-2,1.9)B.(0,0)C.(2,-2)D.(-3,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)x、y、z均為正數(shù),且3x=4y=6z
(1)試求x,y,z之間的關(guān)系;
(2)求使2x=py成立,且與p最近的正整數(shù)(即求與P的差的絕對(duì)值最小的正整數(shù));
(3)試比較3x、4y、6z的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(3x)=2x•log23,則f(21005)的值等于2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C:x2+y2+2x-3=0.
(1)求圓的圓心C的坐標(biāo)和半徑長(zhǎng);
(2)直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)且不與y軸重合,l與圓C相交于A(x1,y1)、B(x2,y2)兩點(diǎn),求證:$\frac{1}{x_1}+\frac{1}{x_2}$為定值;
(3)斜率為1的直線m與圓C相交于D、E兩點(diǎn),求直線m的方程,使△CDE的面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案