分析 (Ⅰ)證AB⊥平面PAD,推出EF⊥平面PAD,即可求解直線EF與平面PAD所成角.
(2)取AD中點(diǎn)O,連結(jié)OP.以O(shè)點(diǎn)為原點(diǎn),分別以射線OG,OD為x,y軸的正半軸,建立空間直角坐標(biāo)系O-xyz.求出平面EFG的法向量,求出$\overrightarrow{MF}=({2-4λ,1,\sqrt{3}})$,利用直線MF與平面EFG所成角為θ,通過空間向量的數(shù)量積求解即可.
解答 解:(Ⅰ)證明:因?yàn)槠矫鍼AD⊥平面ABCD,
平面PAD∩平面ABCD=AD,AB⊥AD
所以AB⊥平面PAD.…(3分)
又因?yàn)镋F∥AB,所以EF⊥平面PAD,
所以直線EF與平面PAD所成角的為:$\frac{π}{2}$.…(5分)
(2)取AD中點(diǎn)O,連結(jié)OP,
因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊥AD
所以PO⊥平面ABCD…(7分)
如圖所示,以O(shè)點(diǎn)為原點(diǎn),分別以射線OG,OD為x,y軸的正半軸,
建立空間直角坐標(biāo)系O-xyz.由題意知各點(diǎn)坐標(biāo)如下:
A(0,-2,0),B(4,-2,0),$E({0,-1,\sqrt{3}})$,$F({2,-1,\sqrt{3}})$,G(4,0,0)
所以$\overrightarrow{EF}=({2,0,0})$,$\overrightarrow{EG}=({4,1,-\sqrt{3}})$…(8分)
設(shè)平面EFG的法向量為$\overrightarrow n=({x,y,z})$,
由$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{EF}=0}\\{\overrightarrow n•\overrightarrow{EG}=0}\end{array}}\right.$即$\left\{{\begin{array}{l}{,2x=0}\\{4x+y-\sqrt{3}z=0}\end{array}}\right.$可取$\overrightarrow n=(0,\sqrt{3},1)$…(10分)
設(shè)$\overrightarrow{AM}=λ\overrightarrow{AB}=λ({4,0,0})$…(11分)
即(xM,yM+2,zM)=λ(4,0,0),解得$\left\{\begin{array}{l}{x_M}=4λ\\{y_M}=-2\\{z_M}=0\end{array}\right.$,即M(4λ,-2,0).
故$\overrightarrow{MF}=({2-4λ,1,\sqrt{3}})$…(12分)
設(shè)直線MF與平面EFG所成角為θ,$sinθ=|{\frac{{\overrightarrow{MF}•\overrightarrow n}}{{|{\overrightarrow{MF}}|•|{\overrightarrow n}|}}}|=\frac{{2\sqrt{3}}}{{2\sqrt{{{({2-4λ})}^2}+4}}}=\frac{{\sqrt{15}}}{5}$,…(13分)
解得$λ=\frac{1}{4}$或$λ=\frac{3}{4}$.…(14分)
因此AM=1或AM=3.…(15分)
點(diǎn)評(píng) 本題考查直線與平面市場(chǎng)價(jià)的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$單位 | B. | 向右平移$\frac{π}{3}$單位 | C. | 向左平移$\frac{π}{6}$單位 | D. | 向右平移$\frac{π}{6}$單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com