14.已知A(1,-2,11),B(6,-1,4),C(4,2,3),則△ABC為( 。
A.銳角三角形B.等腰三角形C.直角三角形D.鈍角三角形

分析 利用空間兩點(diǎn)間距離公式求出三邊長,利用勾股定理能求出△ABC為直角三角形.

解答 解:∵A(1,-2,11),B(6,-1,4),C(4,2,3),
∴|AB|=$\sqrt{(6-1)^{2}+(-1+2)^{2}+(4-11)^{2}}$=5$\sqrt{3}$,
|AC|=$\sqrt{(4-1)^{2}+(2+2)^{2}+(3-11)^{2}}$=$\sqrt{89}$,
|BC|=$\sqrt{(4-6)^{2}+(2+1)^{2}+(3-4)^{2}}$=$\sqrt{14}$,
∴AB2+BC2=AC2,∴AB⊥BC.
∴△ABC為直角三角形.
故選:C.

點(diǎn)評(píng) 本題考查三角形形狀的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意兩點(diǎn)間距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列式子中表示正確的是( 。
A.2+cosx=4B.$\sqrt{10}$>πC.sinx•cosx=sin2xD.sin75°>cos14°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且$\sqrt{3}a=2csinA$.
(1)求角C的大小;
(2)若$c=\sqrt{7}$,且△ABC的周長為$5+\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{\sqrt{1-{x}^{2}}}{x+3}$-m有零點(diǎn),則實(shí)數(shù)m的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=3+log3x,x∈[1,9],求函數(shù)y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知z1=1+ilog2x,z2=$\sqrt{3}$+i,|z1|<|z2|,則實(shí)數(shù)x的取值范圍為(${2}^{-\sqrt{3}}$,${2}^{\sqrt{3}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,B、C是海岸線l上相距50km的兩個(gè)海邊小城,圓O是半徑為10km的某海島小城的環(huán)島路,A為圓O上的物資中轉(zhuǎn)站,其中∠AOC=$\frac{2}{3}$π,OC=25km,且l∥OA,為使中轉(zhuǎn)站A的物資運(yùn)往B城,計(jì)劃從A地沿環(huán)島路至某地P,再沿水路PQ至海岸線l上Q,最后沿海岸線QB至B城修建運(yùn)輸線,其中PQ∥OC,Q在線段BC上.
(1)設(shè)∠POC=θ,求運(yùn)輸線總長度y關(guān)于θ的函數(shù);
(2)求運(yùn)輸線總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U={1,2,3,4,5},A={1,5},B={2,4},則B∩(∁UA)=(  )
A.{2,3,4}B.{2}C.{2,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.方程lnx=$\frac{x+1}{x-1}$實(shí)數(shù)根的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案