在F(x)中,已知內(nèi)角A、B、C所對的邊分別為a、b、c,向量數(shù)學公式,數(shù)學公式,且數(shù)學公式
(I)求銳角B的大。
(II)如果b=2,求F(x)的面積S△ABC的最大值.

解:(I)
由向量平行的坐標表示可得,由向量平行的坐標表示可得,
即2sinBcosB+cos2B=0
∴sin2B+cos2B=0

∵0<B<
∴B=
(II)∵b=2,B=60°
由余弦定理可得,4=b2=a2+c2-2ac×=a2+c2-ac≥ac
∴ac≤4
∴S△ABC=
三角形的面積最大值為
分析:(I)由向量平行的坐標表示可得,,整理可得
結合已經(jīng)知道可求B
(II);利用余弦定理可得4=a2+c2-ac,利用基本不等式可得ac≤4,代入面積公式可求
點評:本題主要考查了向量平行的坐標表示,輔助角公式,由三角函數(shù)值班求角,余弦定理及基本不等式,三角形的面積公式等知識的綜合運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省臺州市高一(下)期末數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省揚州市期末數(shù)學復習試卷3(解析版) 題型:解答題

在平面直角坐標系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省南京市金陵中學高考數(shù)學預測試卷(1)(解析版) 題型:解答題

在平面直角坐標系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

同步練習冊答案