等腰直角三角形ACB中∠C=90°,CA=CB=a,點(diǎn)P在AB上,且
.
AP
.
AB
(0≤λ≤1),則
.
CA
.
CP
的最大值為
( 。
A、a
B、a2
C、2a
D、
2
a
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:如圖所示,利用向量的數(shù)量積運(yùn)算即可得出.
解答: 解:如圖所示,
A(a,0),B(0,a).
.
AP
.
AB
(0≤λ≤1),
OP
=
OA
+λ
AB

=(a-λa,λa).
.
CA
.
CP
=(a,0)•(a-λa,λa)
=(1-λ)a2≤a2,
∴當(dāng)λ=0時(shí),
.
CA
.
CP
取得最大值為a2
故選:B.
點(diǎn)評(píng):本題考查了數(shù)量積運(yùn)算的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x>0,y<0,命題q:x>y,
1
x
1
y
,則p是q的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足|x|+|y|=5,則x2+y2-2x的最小值是(  )
A、
15
2
B、8
C、7
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-
3
sin2x+2cos2
x.
(Ⅰ)求f(x)的最大值及取得最大值時(shí)的x集合;
(Ⅱ)設(shè)△ABC的角A,B,C的對(duì)邊分別為a,b,c,且a=1,f(A)=0.求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,點(diǎn)P在AB上,且
.
AP
.
AB
(0≤λ≤1),則
.
CA
.
CP
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ex+m(其中e是自然對(duì)數(shù)的底數(shù))的圖象上存在點(diǎn)(x,y)滿足條件:
x≤2
y≤ex
y≥x
則實(shí)數(shù)m的取值范圍是( 。
A、[-1,2e-e2]
B、[2-e2,-1]
C、[2-e2,2e-e2]
D、[2-e2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=2”是“?x∈(0,+∞),ax+
1
8x
≥1”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓O的半徑為3,AB與圓O相切于A,BO與圓O相交于C,BC=2,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:y=k1x+b1與l2:y=k2x+b2,則k1=k2是l1∥l2的( 。
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案