【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓交于兩點.
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點在同一條直線上,直線與平行,且與拋物線只有一個公共點,求直線的方程.
【答案】(Ⅰ) (Ⅱ) , .
【解析】試題分析:
(Ⅰ)由題意結合拋物線的對稱性可知是等腰三角形,設準線與軸交于點,結合拋物線的性質可得,求解關于實數p的方程可得拋物線方程為;
(Ⅱ)由對稱性不妨設,則,結合中點坐標公式有B,由拋物線準線方程的性質有,則A, ,結合導函數的性質可得切點坐標為,則直線的方程為, .
試題解析:
(Ⅰ)由對稱性知, 是等腰三角形.
∵,點到準線的距離為,設準線與軸交于點,
即, ,
∴.
∴拋物線方程為;
(Ⅱ)由對稱性不妨設,則.
∵點關于點對稱,
∴點的坐標為.
∵點在準線上,
∴.
∴.
∴點坐標為.
∴.
又∵直線與直線平行,
∴.
由已知直線與拋物線相切,設切點為,
∴.
∴.
∴切點.
∴直線的方程為,即.
由對稱性可知,直線有兩條,分別為, .
科目:高中數學 來源: 題型:
【題目】數列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個數列中所有符合題目條件的數列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為(為參數),設與的交點為,當變化時, 的軌跡為曲線.
(1)寫出的普遍方程及參數方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點到的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究某種圖書每冊的成本費(元)與印刷數(千冊)的關系,收集了一些數據并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
表中, .
(1)根據散點圖判斷: 與哪一個更適宜作為每冊成本費(元)與印刷數(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程(回歸系數的結果精確到0.01);
(3)若每冊書定價為10元,則至少應該印刷多少千冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結果精確到1)
(附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為, )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《孫子算經》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?” 意思是:“一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?”假如回娘家當天均回夫家,若當地風俗正月初二都要回娘家,則從正月初三算起的一百天內,有女兒回娘家的天數有
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.
(1)求該三棱柱的體積;
(2)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com