已知直線的方向向量,直線的方向向量,若,且,則的值是( )

A.-3或1 B.3或-1 C.-3 D.1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)當(dāng)a=1時,討論f(x)的單調(diào)性;
(2)當(dāng)a>0時,設(shè)f(x)在x=x0處取得最小值,求證:f(x0)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱柱ABC-A1B1C1中,AB=BC,AB⊥BC,側(cè)面AA1C1C是菱形,∠A1AC=60°,且側(cè)面AA1C1C⊥底面ABC,點O為線段AC的中點,點E為線段BC1上的一動點(不包括端點).
(1)求證:A1O⊥平面A1B1C1;
(2)試確定點E的位置,使平面A1AE與平面ABC所成的銳二面角的余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知在極坐標(biāo)系中,A(4,0),B(2$\sqrt{3}$,$\frac{π}{6}$),圓C的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)求直線AB和圓C的直角坐標(biāo)方程.
(Ⅱ)已知P為圓C上的任意一點,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩地相距1000km,貨車從甲地勻速行駛到乙地,速度不得超過80km/h,已知貨車每小時的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的$\frac{1}{4}$倍,固定成本為a元;
(Ⅰ)將全程運(yùn)輸成本y(元)表示為速度v(km/h)的函數(shù),并指出這個函數(shù)的定義域;
(Ⅱ)若a=400,為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前10項和為30,它的前30項和為210,則前20項和為( 。
A.100B.120C.390D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=2tan(3x-$\frac{π}{4}$),試求函數(shù)的定義域、值域、最小正周期、單調(diào)區(qū)間并判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在四次獨立重復(fù)試驗中,事件A在每次試驗中出現(xiàn)的概率相同,若事件A至少發(fā)生一次的概率為$\frac{65}{81}$,則事件A恰好發(fā)生一次的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{32}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

一個四棱錐的側(cè)棱長都相等,底面是正方形,其正(主)視圖如圖所示,則該四棱錐側(cè)面積是( )

A. B. C. D.8

查看答案和解析>>

同步練習(xí)冊答案