【題目】已知動圓M與直線相切,且與定圓C外切,

求動圓圓心M的軌跡方程.

求動圓圓心M的軌跡上的點到直線的最短距離.

【答案】(1); (2).

【解析】

1)設(shè)動圓圓心為Mxy),半徑為r,題目動點Mx,y)到C0,﹣3)的距離等于點M到直線y3的距離,判斷軌跡是拋物線方程,求解即可;

2)設(shè)直線方程為yx+m,,利用判別式為0,求出切線方程,利用平行線之間的距離求解即可.

設(shè)動圓圓心為,半徑為r,

由題意知動點的距離等于點M到直線的距離,

由拋物線的定義可知,動圓圓心M的軌跡是以為焦點,以為準線的一條拋物線,

故所求動圓圓心M的軌跡方程為:.

(2)設(shè)直線方程為yx+m,

可得x2+12x+12m0,由△=1224×12m0,

解得m3d

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哈三中群力校區(qū)高二、六班同學(xué)用隨機抽樣的辦法對所在校區(qū)老師的飲食習(xí)慣進行了一次調(diào)查, 飲食指數(shù)結(jié)果用莖葉圖表示如圖, 圖中飲食指數(shù)低于70的人是飲食以蔬菜為主;飲食指數(shù)高于70的人是飲食以肉類為主.

(1)完成下列2×2列聯(lián)表:

能否有99%的把握認為老師的飲食習(xí)慣與年齡有關(guān)?

(2)從群力校區(qū)任選一名老師, 設(shè)“選到45歲以上老師”為事件, “飲食指數(shù)高于70的老師”為事件, 用調(diào)查的結(jié)果估計(用最簡分數(shù)作答);

(3)為了給食堂提供老師的飲食信息, 根據(jù)(1)(2)的結(jié)論,能否有更好的抽樣方法來估計老師的飲食習(xí)慣, 并說明理由.附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額 (百元)的頻率分布直方圖如圖所示:

(1)求網(wǎng)民消費金額的中位數(shù)

(2)把下表中空格里的數(shù)填上,能否有的把握認為網(wǎng)購消費與性別有關(guān);

(3)將(2)中的頻率當作概率,電子商務(wù)平臺從該市網(wǎng)民中隨機抽取10人贈送電子禮金,求這10人中女性的人數(shù)的數(shù)學(xué)期望.

合計

30

合計

45

附表:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實常數(shù),函數(shù).

(1)求函數(shù)的最值;

(2)設(shè).

(i)討論函數(shù)的單調(diào)性;

(ⅱ) 若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求的單調(diào)區(qū)間;

(2)當時,若對任意,都有成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖動點P從單位正方形ABCD頂點A開始,順次經(jīng)B、C、D繞邊界一周,當 表示點P的行程, 表示PA之長時,求y關(guān)于x的解析式,并求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.

在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( )

A. 2號學(xué)生進入30秒跳繩決賽 B. 5號學(xué)生進入30秒跳繩決賽

C. 8號學(xué)生進入30秒跳繩決賽 D. 9號學(xué)生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M與直線相切,且與定圓C外切,

求動圓圓心M的軌跡方程.

求動圓圓心M的軌跡上的點到直線的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為F,且過點A (2,2),橢圓的離心率為,點B為拋物線C與橢圓D的一個公共點,且.

(Ⅰ)求橢圓D的方程;

(Ⅱ)過橢圓內(nèi)一點P(0,t)的直線l的斜率為k,且與橢圓C交于M,N兩點,設(shè)直線OM,ON(O為坐標原點)的斜率分別為k1,k2若對任意k,存在實數(shù)λ,使得k1+ k2=λk,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案