【題目】某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:
同意 | 不同意 | 合計(jì) | |
男生 | a | 5 | |
女生 | 40 | d | |
合計(jì) | 100 |
(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由;
(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4 位學(xué)生進(jìn)行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1), 有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.
【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出, ,根據(jù)公式計(jì)算結(jié)果即可確定有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項(xiàng)分布,利用公式計(jì)算概率及期望即可.
(1)因?yàn)?00人中同意父母生“二孩”占60%,
所以,
文(2)由列聯(lián)表可得
而
所以有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)
(2)①由題知持“同意”態(tài)度的學(xué)生的頻率為,
即從學(xué)生中任意抽取到一名持“同意”態(tài)度的學(xué)生的概率為.由于總體容量很大,
故X服從二項(xiàng)分布,
即從而X的分布列為
X | 0 | 1 | 2 | 3 | 4 |
X的數(shù)學(xué)期望為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬是史記中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:
田忌的馬獲勝概率公子的馬 | 上等馬 | 中等馬 | 下等馬 |
上等馬 | 1 | ||
中等馬 | |||
下等馬 | 0 |
比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
如果按孫臏的策略比賽一次,求田忌獲勝的概率;
如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4支足球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊(duì)的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結(jié)論中正確的是( )
A.恰有四支球隊(duì)并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊(duì)并列第一名
C.恰有兩支球隊(duì)并列第一名的概率為D.只有一支球隊(duì)名列第一名的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若射線()與直線和曲線分別交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項(xiàng)目之一的“市區(qū)公交站點(diǎn)的重新布局及建設(shè)”基本完成,市有關(guān)部門準(zhǔn)備對項(xiàng)目進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗(yàn)收,調(diào)查人員分別在市區(qū)的各公交站點(diǎn)隨機(jī)抽取若干市民對該項(xiàng)目進(jìn)行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨(dú)立評分;②采用百分制評分, 內(nèi)認(rèn)定為滿意,80分及以上認(rèn)定為非常滿意;③市民對公交站點(diǎn)布局的滿意率不低于60%即可進(jìn)行驗(yàn)收;④用樣本的頻率代替概率.
(1)求被調(diào)查者滿意或非常滿意該項(xiàng)目的頻率;
(2)若從該市的全體市民中隨機(jī)抽取3人,試估計(jì)恰有2人非常滿意該項(xiàng)目的概率;
(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔(dān)任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱中的底面為等腰直角三角形,,點(diǎn)分別是邊,上動點(diǎn),若直線平面,點(diǎn)為線段的中點(diǎn),則點(diǎn)的軌跡為
A. 雙曲線的一支一部分 B. 圓弧一部分
C. 線段去掉一個端點(diǎn) D. 拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點(diǎn)監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點(diǎn),以9個站點(diǎn)測得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.
(Ⅰ)若某日播報(bào)的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學(xué)利用每周日的時間進(jìn)行社會實(shí)踐活動,以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會實(shí)踐活動.以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實(shí)踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個評價指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價,設(shè)抽取到不小于180的天數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
Ⅰ討論的單調(diào)性;
Ⅱ當(dāng)時,若關(guān)于x的不等式恒成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為2,,,,分別是,,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com