【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點,以9個站點測得的的平均值為依據(jù)播報我市的空氣質(zhì)量.

(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值

(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天內(nèi).

組數(shù)

分組

天數(shù)

第一組

3

第二組

4

第三組

4

第四組

6

第五組

5

第六組

4

第七組

3

第八組

1

①鄭州市某中學(xué)利用每周日的時間進(jìn)行社會實踐活動,以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會實踐活動的概率;

②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價,設(shè)抽取到不小于180的天數(shù)為的分布列及數(shù)學(xué)期望.

【答案】(Ⅰ)172(Ⅱ)①見解析

【解析】

(Ⅰ)設(shè)重度污染區(qū)AQI的平均值為x,利用加權(quán)平均數(shù)求出x的值;

(Ⅱ)①由題意知11月份AQI小于180的天數(shù),計算所求的概率即可;

②由題意知隨機變量X的可能取值,計算對應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.

(Ⅰ)設(shè)重度污染區(qū)的平均值為,解得.

即重度污染區(qū)平均值為172.

(Ⅱ)①由題意知,內(nèi)的天數(shù)為1,

由圖可知,內(nèi)的天數(shù)為17天,故11月份小于180的天數(shù)為,

則該學(xué)校去進(jìn)行社會實踐活動的概率為.

②由題意知,的所有可能取值為0,1,2,3,且

,,

,

的分布列為

0

1

2

3

數(shù)學(xué)期望 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.

(1)若,求直線與直線所成的角;

(2)若二面角的大小為,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:

同意

不同意

合計

男生

a

5

女生

40

d

合計

100

(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由;

(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機抽樣的方法抽取4 位學(xué)生進(jìn)行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考,取消文理科,實行,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:

年齡(歲)

頻數(shù)

5

15

10

10

5

5

了解

4

12

6

5

2

1

1)分別估計中青年和中老年對新高考了解的概率;

2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?

了解新高考

不了解新高考

總計

中青年

中老年

總計

附:.

0.050

0.010

0.001

3.841

6.635

10.828

3)若從年齡在的被調(diào)查者中隨機選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20168月巴西里約熱內(nèi)盧舉辦的第31屆奧運會上,乒乓球比賽團體決賽實行五場三勝制,且任何一方獲勝三場比賽即結(jié)束.甲、乙兩個代表隊最終進(jìn)入決賽,根據(jù)雙方排定的出場順序及以往戰(zhàn)績統(tǒng)計分析,甲隊依次派出的五位選手分別戰(zhàn)勝對手的概率如下表:

出場順序

1

2

3

4

5

獲勝概率

若甲隊橫掃對手獲勝(即30獲勝)的概率是,比賽至少打滿4場的概率為.

1)求的值;

2)求甲隊獲勝場數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中為自然對數(shù)的底數(shù).

若函數(shù)的切線l經(jīng)過點,求l的方程;

若函數(shù)為遞減函數(shù),試判斷函數(shù)零點的個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一束光線發(fā)出,射到軸上,被軸反射到圓上.(1)求反射線通過圓心時,光線的方程;(2)求在軸上,反射點的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線極坐標(biāo)方程為.

(1)求直線的普通方程以及曲線的參數(shù)方程;

(2)當(dāng)時,為曲線上動點,求點到直線距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案