【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的零點(diǎn)個數(shù);
(2)若,使得,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)利用的符號討論函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理可得零點(diǎn)的個數(shù).
(2)不等式有解等價于對任意恒成立即,構(gòu)建新函數(shù),求出后分和分類討論可得實數(shù)的取值范圍.
解:(1),即,
則,
令解得.
當(dāng)在上單調(diào)遞減;
當(dāng)在上單調(diào)遞增,
所以當(dāng)時,.
因為,
所以.
又,,
所以,,
所以分別在區(qū)間上各存在一個零點(diǎn),函數(shù)存在兩個零點(diǎn).
(2)假設(shè)對任意恒成立,
即對任意恒成立.
令,則.
①當(dāng),即時,且不恒為0,
所以函數(shù)在區(qū)間上單調(diào)遞增.
又,所以對任意恒成立.
故不符合題意;
②當(dāng)時,令,得;令,得.
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
所以,即當(dāng)時,存在,使,即.
故符合題意.
綜上可知,實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了5個城市,分別收集和分析了網(wǎng)約車的,兩項指標(biāo)數(shù),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo)數(shù) | 2 | 4 | 5 | 6 | 8 |
指標(biāo)數(shù) | 3 | 4 | 4 | 4 | 5 |
經(jīng)計算得:,,.
(1)試求與間的相關(guān)系數(shù),并利用說明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)建立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為7時,指標(biāo)數(shù)的估計值;
(3)若城市的網(wǎng)約車指標(biāo)數(shù)落在區(qū)間之外,則認(rèn)為該城市網(wǎng)約車數(shù)量過多,會對城市交通管理帶來較大的影響,交通管理部門將介入進(jìn)行治理,直至指標(biāo)數(shù)回落到區(qū)間之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的指標(biāo)數(shù)為13,問:該城市的交通管理部門是否要介入進(jìn)行治理?試說明理由.
附:相關(guān)公式:,,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,頂點(diǎn)在底面的射影是底面的中心,且各頂點(diǎn)都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn), 為的中點(diǎn),且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知圓是以極坐標(biāo)系中的點(diǎn)為圓心,為半徑的圓,直線的參數(shù)方程為.
(1)求與的直角坐標(biāo)系方程;
(2)若直線與圓交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過橢圓的兩個焦點(diǎn)和兩個頂點(diǎn),點(diǎn)在橢圓上,且,.
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)的直線與圓相交于、兩點(diǎn),過點(diǎn)與垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別是其左、右焦點(diǎn),且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間[a,b],使在[a,b]上的值域是[2a,2b],那么稱為“倍增函數(shù)”。
(I)判斷=是否為“倍增函數(shù)”,并說明理由;
(II)證明:函數(shù)=是“倍增函數(shù)”;
(III)若函數(shù)=ln()是“倍增函數(shù)”,寫出實數(shù)m的取值范圍。(只需寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com