【題目】已知圓,直線, .
(1)求證:對,直線與圓總有兩個(gè)不同的交點(diǎn);
(2)求弦的中點(diǎn)的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù),使得原上有四點(diǎn)到直線的距離為?若存在,求出的范圍;若不存在,說明理由.
【答案】(1)見解析;(2)M的軌跡方程是,它是一個(gè)以為圓心,以為半徑的圓;(3)或.
【解析】【試題分析】(1)依據(jù)題設(shè)可以運(yùn)用圓心與直線的距離或考慮動直線過定點(diǎn)分析判斷;(2)借助題設(shè)條件運(yùn)用圓心與弦中點(diǎn)的連線與直線垂直建立方程求解;(3)依據(jù)題設(shè)借助圖形的直觀,運(yùn)用圓心距與直線的位置和數(shù)量關(guān)系建立不等式:
(1)圓的圓心為,半徑為,所以圓心C到直線的距離.
所以直線與圓C相交,即直線與圓總有兩個(gè)不同的交點(diǎn);
或:直線的方程可化為,無論m怎么變化,直線過定點(diǎn),由于,所以點(diǎn)是圓C內(nèi)一點(diǎn),故直線與圓總有兩個(gè)不同的交點(diǎn).
(2)設(shè)中點(diǎn)為,因?yàn)橹本恒過定點(diǎn),
當(dāng)直線的斜率存在時(shí), ,又, ,
所以,化簡得.
當(dāng)直線的斜率不存在時(shí),中點(diǎn)也滿足上述方程.
所以M的軌跡方程是,它是一個(gè)以為圓心,以為半徑的圓.
(3) 假設(shè)存在直線,使得圓上有四點(diǎn)到直線的距離為,由于圓心,半徑為,則圓心到直線的距離為
化簡得,解得或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當(dāng)一條垂直于底邊BC
(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BF=x
(1)試寫出直線l左邊部分的面積f(x)與x的函數(shù).
(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若A∪B=B,求a的取值范圍。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高二年級學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(均為整數(shù))分成六段: , , ,…后得到如下頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該校高二年級學(xué)生期中考試政治成績的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)
(2)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2-xlna,a>1.
(1)求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)對任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形所在的平面, 分別為的中點(diǎn), .
(1)求證: 平面;
(2)求與面所成角大小的正弦值;
(3)求證: 面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)的解析式為f(x)= .
(1)判斷并證明f(x)在(0,+∞)上的單調(diào)性;
(2)求當(dāng)x<0時(shí),函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新一屆班委會的7名成員有、、三人是上一屆的成員,現(xiàn)對7名成員進(jìn)行如下分工.
(Ⅰ)若正、副班長兩職只能由、、三人選兩人擔(dān)任,則有多少種分工方案?
(Ⅱ)若、、三人不能再擔(dān)任上一屆各自的職務(wù),則有多少種分工方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com