【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當一條垂直于底邊BC

(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x

(1)試寫出直線l左邊部分的面積f(x)與x的函數(shù).

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范圍。.

【答案】(1)(2)

【解析】試題分析:(1)過, 分別作 ,由平面圖形的知識可得線段長度,由面積公式分段可得函數(shù)解析式;(2)化簡集合,由可得,得到關(guān)于的不等式,從而可求得的取值范圍.

試題解析:(1)過 分別作, ,∵是等腰梯形,底角為 ,∴,又∵,∴,①當點上時,即時, ;②當點上時,即時, ;③當點上時,即時, , ,函數(shù)解析式為,

(2)因為,所以,由可得,得解得: ,故的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學的數(shù)學(滿分150分)、物理(滿分110分)成績?nèi)缦卤硭,?shù)學、物理成績分別用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

關(guān)于t的回歸方程;

(2)利用(1)中的回歸方程,分析數(shù)學成績的變化對物理成績的影響,并估計該班某學生數(shù)學成績130分時,他的物理成績(精確到個位).

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)P、Q為兩個非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個數(shù)為

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。

(1)y=x2-5x-6; (2)y=|4-x2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓)的左右焦點,,與橢圓在第一象限的交點為,且,,三點共線.

)求橢圓的方程;

)設(shè)與直線為原點)平行的直線交橢圓,兩點.當的面積取到最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象的一條切線為軸.(1)求實數(shù)的值;(2)令,若存在不相等的兩個實數(shù)滿足,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列滿足:,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,且.

(1)求數(shù)列,的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,BA=BC,以AB為直徑的⊙O分別交AC、BC于點DE,BC的延長線于⊙O的切線AF交于點F

(1)求證:∠ABC=2∠CAF

(2)若,CEEB=1∶4,求CE的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線 .

(1)求證:對,直線與圓總有兩個不同的交點

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;

(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案