【題目】已如長(zhǎng)方形 中, ,M為的中點(diǎn),將 沿 折起,使得平面 平面

1)求證: ;

2)若點(diǎn) 是線段 上的中點(diǎn),求三棱錐與四棱錐的體積的比值 .

【答案】(1)見(jiàn)解析;(2)

【解析】

1)計(jì)算AMBM,根據(jù)勾股定理的逆定理得出AMBM,由面面垂直的性質(zhì)得出BM⊥平面DAM,從而BMAD;

2)過(guò)DDGAM,則DG⊥平面ABCM,再利用中位線分別計(jì)算三棱錐EABM與四棱錐DABCM的高與底面積的比,從而得出體積比.

1)因?yàn)殚L(zhǎng)方形中,的中點(diǎn),

所以,

所以

因?yàn)槠矫?/span> 平面,

平面 平面,平面 ,

所以 平面

因?yàn)?/span> 平面,

所以

2)過(guò) ,連,取中點(diǎn),連結(jié),因?yàn)槠矫?/span> 平面 ,平面 平面

所以 平面,

因?yàn)?/span>的中點(diǎn),

所以 ,

所以平面 ,

由已知可得, ,

所以三棱錐 與四棱錐 的體積的比值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種作圖工具如圖1所示.是滑槽的中點(diǎn),短桿可繞轉(zhuǎn)動(dòng),長(zhǎng)桿通過(guò)處鉸鏈與連接,上的栓子可沿滑槽AB滑動(dòng),且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)轉(zhuǎn)動(dòng)一周(不動(dòng)時(shí),也不動(dòng)),處的筆尖畫(huà)出的曲線記為.以為原點(diǎn),所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.

)求曲線C的方程;

)設(shè)動(dòng)直線與兩定直線分別交于兩點(diǎn).若直線總與曲線有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,數(shù)列為等比數(shù)列,且,.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)數(shù)列是由所有的項(xiàng),且的項(xiàng)組成的數(shù)列,且原項(xiàng)數(shù)先后順序保持不變,求數(shù)列的前2019項(xiàng)的和;

(3)對(duì)任意給定的是否存在使成等差數(shù)列?若存在,用分別表示(只要寫(xiě)出一組即可);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線為參數(shù))與曲線相交于點(diǎn),兩點(diǎn).

(1)求曲線的平面直角坐標(biāo)系方程和直線的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856331)

甲、乙兩家快餐店對(duì)某日7個(gè)時(shí)段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡(jiǎn)稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為(x-12+y-12=9,P2,2)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為ACBD,則四邊形ABCD的面積是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4∶2∶1.

(1)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85]內(nèi)的概率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖一是美麗的勾股樹(shù),它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹(shù),重復(fù)圖二的作法,得到圖三為第2勾股樹(shù),以此類(lèi)推,已知最大的正方形面積為1,則第勾股樹(shù)所有正方形的個(gè)數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若滿足,則稱函數(shù)型函數(shù)”.

1)判斷函數(shù)是否為型函數(shù),并說(shuō)明理由;

2)設(shè)函數(shù),記為函數(shù)的導(dǎo)函數(shù).

①若函數(shù)的最小值為1,求的值;

②若函數(shù)型函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案