【題目】在平面直角坐標系xoy中,點 ,圓F2:x2+y2﹣2
x﹣13=0,以動點P為圓心的圓經(jīng)過點F1 , 且圓P與圓F2內(nèi)切.
(1)求動點的軌跡的方程;
(2)若直線l過點(1,0),且與曲線E交于A,B兩點,則在x軸上是否存在一點D(t,0)(t≠0),使得x軸平分∠ADB?若存在,求出t的值;若不存在,請說明理由.
【答案】
(1)解:圓F2:x2+y2﹣2 x﹣13=0化為
.
故F2( ),半徑r=4.
而 <4,∴點F1在圓F2內(nèi),
又由已知得圓P的半徑R=|PF1|,由圓P與圓F2內(nèi)切得,圓P內(nèi)切于圓F2,即|PF2|=4﹣|PF1|,
∴|PF1|+|PF2|=4>|F1F2|,
故點P的軌跡是以F1、F2為焦點,長軸長為4的橢圓,
有c= ,a=2,則b2=a2﹣c2=1.
故動點的軌跡方程為
(2)解:設A(x1,y1),B(x2,y2),
當直線l的斜率不為0時,設直線l:x=ny+1.
聯(lián)立 ,得(n2+4)y2+2ny﹣3=0.
△=16(n2+3)>0恒成立.
,
.①
設直線DA、DB的斜率分別為k1,k2,則由∠ODA=∠ODB得,
=
= =
.
∴2ny1y2+(1﹣t)(y1+y2)=0,②
聯(lián)立①②,得n(t﹣4)=0.
故存在t=4滿足題意;
當直線l的斜率為0時,直線為x軸,取A(﹣2,0),B(2,0),滿足∠ODA=∠ODB.
綜上,在x軸上存在一點D(4,0),使得x軸平分∠ADB.
【解析】(1)化圓的方程為標準方程,求出圓心坐標和半徑,畫出圖形,數(shù)形結合可得|PF1|+|PF2|=4>|F1F2|,故點P的軌跡是以F1、F2為焦點,長軸長為4的橢圓, 由此求出動點的軌跡方程;(2)設A(x1 , y1),B(x2 , y2),當直線l的斜率不為0時,設直線l:x=ny+1.聯(lián)立直線方程與橢圓方程,化為關于y的一元二次方程,利用根與系數(shù)的關系求得A,B的縱坐標的和與積,結合斜率關系求得t值;當直線l的斜率為0時,直線為x軸,取A(﹣2,0),B(2,0),滿足∠ODA=∠ODB.綜上,在x軸上存在一點D(4,0),使得x軸平分∠ADB.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點處下上至
處有兩種路徑.一種是從
沿直線步行到
,另一種是先從
沿索道乘纜車到
,然后從
沿直線步行到
.現(xiàn)有甲、乙兩位游客從
處下山,甲沿
勻速步行,速度為
.在甲出發(fā)
后,乙從
乘纜車到
,在
處停留
后,再從
勻速步行到
,假設纜車勻速直線運動的速度為
,山路
長為1260
,經(jīng)測量
,
.
(1)求索道的長;
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時間不超過
,乙步行的速度應控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究某高校大學5000名新生的視力情況,隨機地抽查了該校100名進校新生的視力情況,得到其頻率分布直方圖如右圖,若規(guī)定視力低于5.0的學生屬[于近視學生,則估計該校新生中不是近視的人數(shù)約為( )
A.300人
B.400人
C.600人
D.1000人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知邊長為1的正方形 與
所在的平面互相垂直,點
分別是線段
上的動點(包括端點),
,設線段
的中點的軌跡為
,則
的長度為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在梯形ABCD中,∠ADC= ,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,點E在BP上,且EB=2PE.
(1)求證:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:
,
,
,
,
.
(1).求圖中的值; 并根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(2).若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)(
)之比如上右表所示,求數(shù)學成績在
之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)= (e是自然對數(shù)的底數(shù)),f(x)的圖象在x=﹣
處的切線方程為y=
.
(1)求a,b的值;
(2)探究直線y= .是否可以與函數(shù)g(x)的圖象相切?若可以,寫出切點的坐標,否則,說明理由;
(3)證明:當x∈(﹣∞,2]時,f(x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設計, 可以使得工廠產(chǎn)生的噪聲對居民的影響最�。ḿ垂S與村莊的距離最遠).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com