1.若函數(shù)f(x)=loga(x+b)的大致圖象如圖所示,其中a,b(a>0且a≠1)為常數(shù),則函數(shù)g(x)=ax+b的大致圖象為( 。
A.B.C.D.

分析 由圖象可知對(duì)數(shù)的底數(shù)滿足0<a<1,且0<f(0)<1,再根據(jù)指數(shù)函數(shù)g(x)=ax+b的性質(zhì)即可推得.

解答 解:由圖象可知0<a<1且0<f(0)<1,
即 $\left\{\begin{array}{l}{0<a<1,①}\\{0<lo{g}_{a}b<1,②}\end{array}\right.$  
解②得loga1<logab<logaa,
∵0<a<1∴由對(duì)數(shù)函數(shù)的單調(diào)性可知a<b<1,
結(jié)合①可得a,b滿足的關(guān)系為0<a<b<1,
由指數(shù)函數(shù)的圖象和性質(zhì)可知,g(x)=ax+b的圖象是單調(diào)遞減的,且一定在x軸上方.
故選:B.

點(diǎn)評(píng) 本小題主要考查對(duì)數(shù)函數(shù)的圖象、指數(shù)函數(shù)的圖象、對(duì)數(shù)函數(shù)的圖象的應(yīng)用、方程組的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知橢圓$C:\frac{x^2}{a^2}+{y^2}=1(a>1)$的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(1)求橢圓C的方程;
(2)若不過(guò)點(diǎn)A的動(dòng)直線l與橢圓相交于P,Q兩點(diǎn),且$\overrightarrow{AP}•\overrightarrow{AQ}=0$,試問(wèn)直線l能否過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.△ABC中,若sin2B=sinA•sinC,則角B的取值范圍為$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=2lnx+$\frac{a}{{x}^{2}}$(a>0).若當(dāng)x∈(0,+∞)時(shí),f(x)≥2恒成立,則實(shí)數(shù)a的取值范圍是[e,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖的程序框圖,若輸出的S的值為-88,則判斷框中的條件可能為( 。
A.n>6?B.n≥7?C.n>8?D.n>9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.對(duì)于曲線C:$\frac{x^2}{4-k}$+$\frac{y^2}{k-1}$=1,給出下面四個(gè)命題:
①曲線C不可能表示橢圓;    
②若曲線C表示雙曲線,則k<1或k>4;
③當(dāng)1<k<4時(shí),曲線C表示橢圓;
④若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<k<$\frac{5}{2}$.
其中所有正確命題的序號(hào)為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=27x-x3在區(qū)間[-4,2]上的最小值是-54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=(x2-4)(x-a),其中a∈R.
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{lnx+1}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并判斷是否有極值;
(2)若對(duì)任意的x>1,恒有l(wèi)n(x-1)+k+1≤kx成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案