分析 (I)當a=0時,f(x)≥g(x)即(1+x)2-mln(1+x)≥x2+x.由于f(x)≥g(x)在(0,+∞)上恒成立,可得m≤$[\frac{1+x}{ln(1+x)}]_{min}$,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
(II)利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性,進而得出關(guān)系式.
解答 解:(I)當a=0時,f(x)≥g(x)即(1+x)2-mln(1+x)≥x2+x.
由于f(x)≥g(x)在(0,+∞)上恒成立,∴m≤$[\frac{1+x}{ln(1+x)}]_{min}$,
令h(x)=$\frac{1+x}{ln(1+x)}$,h′(x)=$\frac{ln(1+x)-1}{l{n}^{2}(1+x)}$.
令h′(x)>0,解得x>e-1,此時函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得0<x<e-1,此時函數(shù)h(x)單調(diào)遞減.
∴當x=e-1時,函數(shù)h(x)取得最小值,h(e-1)=e.
∴m≤e.
∴實數(shù)m的取值范圍是m≤e.
(II)當m=2時,若函數(shù)h(x)=f(x)-g(x)=1+x-2ln(1+x)-a,
h′(x)=1-$\frac{2}{1+x}$=$\frac{x-1}{x+1}$,
當x∈[0,1)時,h′(x)<0,函數(shù)h(x)單調(diào)遞減;當x∈(1,2]時,h′(x)<0,函數(shù)h(x)單調(diào)遞增.
∴當x=1時,函數(shù)h(x)取得最小值,h(1)=2-2ln2-a;
又h(0)=1-a,h(2)=3-2ln3-a.∴h(2)<h(0).
∵函數(shù)h(x)在[0,2]上恰有兩個不同的零點,
∴$\left\{\begin{array}{l}{h(2)≥0}\\{h(1)<0}\end{array}\right.$,
解得:2-2ln2<a≤3-2ln3,
∴實數(shù)a的取值范圍是(2-2ln2,3-2ln3].
點評 本題考查了考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | b>a>c | B. | a>c>b | C. | c>b>a | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{20}{31}$ | B. | $\frac{19}{29}$ | C. | $\frac{17}{28}$ | D. | $\frac{16}{27}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$ | B. | $\frac{1}{2}$,$\frac{5}{4}$ | C. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=|x|,g(x)=$\sqrt{{t}^{2}}$ | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}-\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{12}$個單位 | D. | 向右平移$\frac{π}{12}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com