分析 畫出函數(shù)的圖象,利用函數(shù)的零點個數(shù),結(jié)合兩個函數(shù)的圖象,寫出結(jié)果即可.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{|{x}^{2}+4x+3|,x≤0}\\{2|x-1|,x>0}\end{array}\right.$的圖象如下圖,
y=f(x)-a的零點即為函數(shù)y=f(x)圖象與函數(shù)y=a的交點個數(shù),
結(jié)合圖象可知,函數(shù)y=f(x)-a恰有3個零點,則a=0或2≤a≤3.
故答案為:a=0或2≤a≤3.
點評 本題考查分段函數(shù)的圖象的作法,函數(shù)的零點個數(shù)的判斷與應(yīng)用,考查數(shù)形結(jié)合以及轉(zhuǎn)化首項的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-1,∞)∪(2,+∞) | C. | (-∞,2) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,4] | B. | [-2$\sqrt{2}$,2$\sqrt{2}$] | C. | (-∞,4] | D. | (-∞,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+(y-1)2=3 | B. | x2+(y-1)2=4 | C. | x2+(y-1)2=12 | D. | x2+(y-1)2=16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com