若橢圓=1的一個(gè)焦點(diǎn)是(0,4),則實(shí)數(shù)k的值為

[  ]

A.
B.6
C.24
D.
答案:D
解析:

解析:考查橢圓的幾何性質(zhì),利用代入法排除。將四個(gè)選項(xiàng)中的

值代入驗(yàn)證即可得到正確選項(xiàng)D。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a
>b>0),稱圓心在原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(1)求橢圓C的方程和其“準(zhǔn)圓”方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn).求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.
①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求l1,l2的方程;
②求證:|MN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2
2
,0
),其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

若橢圓=1的一個(gè)焦點(diǎn)是(0,4),則實(shí)數(shù)k的值為

[  ]

A.
B.6
C.24
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案