分析 根據(jù)等差數(shù)列和等比數(shù)列的求和公式計算即可.
解答 解:設(shè)首項為a,
則an=a•2n-1,
∴bn=log2an=log2a+n-1
∴bn-bn-1=log2an-log2an-1=log22=1,
∴數(shù)列{bn}是以log2a為首項,以1為公差的等差數(shù)列,
∴10log2a+$\frac{10×(10-1)}{2}$=25,
∴a=$\frac{1}{4}$
∴數(shù)列{an}的首項為$\frac{1}{4}$,
∴a1+a2+a3+…+a10=$\frac{\frac{1}{4}(1-{2}^{10})}{1-2}$=$\frac{1023}{4}$,
故答案為:$\frac{1023}{4}$
點評 本題考查了等差數(shù)列和等比數(shù)列的求和公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {1} | C. | {0,1} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{5\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3i | B. | -3 | C. | 3i | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,3,4,5} | C. | {2,3,4} | D. | {1,2,4,5} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com