函數(shù)f(x)=Asin(ωx-
π
4
)(A>0,ω>0)的最大值為2,相鄰兩條對(duì)稱(chēng)軸的距離為
π
2
,則f(x)=
 
考點(diǎn):正弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的最大值求出A,由周期求出ω,可得函數(shù)的解析式.
解答: 解:由函數(shù)的最大值為2,可得A=2,
再根據(jù)函數(shù)的圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
π
2
,可得
1
2
ω
=
π
2
,求得ω=2,
∴函數(shù)f(x)=2sin(2x-
π
4
),
故答案為:2sin(2x-
π
4
).
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x[f(x)-f(-x)]<0的解集為(  )
A、(-1,0)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的周長(zhǎng)為8,C(0,0),B(2,0),過(guò)B的直線與∠CAB的外角平分線垂直,且交AC的延長(zhǎng)線于M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四邊形BCC1B1是邊長(zhǎng)為4的正方形,直線AB與平面ACC1A1所成角的正切值為2,點(diǎn)D為棱AA1上的動(dòng)點(diǎn).
(I)當(dāng)點(diǎn)D為何位置時(shí),CD⊥平面B1C1D?
(II)當(dāng)AD=2
2
時(shí),求二面角B1-DC-C1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C1,拋物線C2的焦點(diǎn)均在x軸上,C1的中心與C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取一個(gè)點(diǎn),將其坐標(biāo)記錄如下:
x1
2
3
23
y2
2
2
242
6
則在C1和C2上點(diǎn)的個(gè)數(shù)分別是( 。
A、1,4B、2,3
C、4,1D、3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題p:2n-1(n∈Z)是奇數(shù);q:2n+1(n∈Z)是偶數(shù),則下列說(shuō)法中正確的是( 。
A、¬p為真B、¬q為假
C、p∨q為真D、p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,D是BC的中點(diǎn),E是AC的三等分點(diǎn),且EC=2AE,若
AB
=
c
AC
=
b
,則
BE
=
 
,(結(jié)果用
c
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,若z=x+2y,則z的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀右圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出n的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案