13.直線l:x-y+2=0和圓C:x2+y2+2x-4y+1=0的位置關(guān)系是( 。
A.相離B.相切C.相交過(guò)圓心D.相交不過(guò)圓心

分析 化圓的方程為標(biāo)準(zhǔn)方程,計(jì)算圓心到直線的距離與半徑比較,即可得到結(jié)論.

解答 解:圓x2+y2+2x-4y+1=0化為標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=4,圓心坐標(biāo)為(-1,2),半徑為2.
∴圓心到直線的距離為$\frac{|-1-2+2|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$<2,
∴直線與圓相交,圓的圓心不滿足直線方程.
故選:D.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,解題的關(guān)鍵是計(jì)算圓心到直線的距離與半徑比較,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+1
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N+,都有$\frac{C_1}{2}+\frac{C_2}{2^2}+…+\frac{C_n}{2^n}$=an+1成立,求c1+c2+…+c2016的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(x-2)lnx+1.
(1)判斷f(x)的導(dǎo)函數(shù)f′(x)在(1,2)上零點(diǎn)的個(gè)數(shù);
(2)求證f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知|$\overrightarrow a}$|=2,$|{\overrightarrow b}$|=3,且$\overrightarrow a$、$\overrightarrow b$的夾角為$\frac{π}{3}$,則|3$\overrightarrow a$-2$\overrightarrow b}$|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}的各項(xiàng)均為正值,若a3+2a6=6,則a4a6的最大值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}2x+y-3≥0\\ x-y≤0\\ x-3≤0\end{array}\right.$,則目標(biāo)函數(shù)z=2x-3y的最大值是(  )
A.15B.5C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且E的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的$\sqrt{2}$倍,F(xiàn)1,F(xiàn)2分別是E的左,右焦點(diǎn).
(Ⅰ)求橢圓E的離心率與標(biāo)準(zhǔn)方程;
(Ⅱ)若拋物線y2=4x上存在兩點(diǎn)A,B,橢圓E上存在兩點(diǎn)C,D,滿足A,B,F(xiàn)2三點(diǎn)共線,C,D,F(xiàn)2三點(diǎn)共線,且CD⊥AB,求四邊形ADBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),AF1=3BF1
(Ⅰ)若AB=4,△ABF2的周長(zhǎng)為16,求AF2
(Ⅱ)若cos∠AF2B=$\frac{3}{5}$,求橢圓E的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.2013年底某市有人口100萬(wàn),人均占有綠地面積為9.8m2,計(jì)劃五年內(nèi)(到2018年底人均綠地面積增加15%,如該市在此期間,每年人口平均增長(zhǎng)率為17‰,則該市每年平均要新增綠地面積多少?(結(jié)果精確到0.01萬(wàn)m2)(人均綠地面積=$\frac{綠地總面積}{人口總數(shù)}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案