已知拋物線C:,定點M(0,5),直線軸交于點F,O為原點,若以O(shè)M為直徑的圓恰好過與拋物線C的交點.
(1)求拋物線C的方程;
(2)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于,求證: 拋物線C分別過兩點的切線的交點Q在一條定直線上運動.
(1)拋物線C的方程為;(2)詳見解析.

試題分析:(1)求拋物線C的方程,只需求出的值即可,由已知可知直線軸的交點為拋物線C的焦點,又以為直徑的圓恰好過直線拋物線的交點,設(shè)交點為,則,故,即,解得,從而可得拋物線C的方程;(2),求證: 拋物線C分別過兩點的切線的交點Q在一條定直線上運動,找出交點點的坐標即可,故需求出過兩點的切線的方程,而有關(guān),故可設(shè)出直線AB的方程為(斜率一定存在),再設(shè)出,,利用三點共線可得,,再由導(dǎo)數(shù)的幾何意義,求出斜率,得過點的切線方程為:,過點的切線方程為:,解出,結(jié)合,得,即得,從而得證。
試題解析:(1)直線軸的交點為拋物線C的焦點,又以為直徑的圓恰好過直線拋物線的交點,,
所以拋物線C的方程為
(2)由題意知直線AB的斜率一定存在,設(shè)直線AB的方程為,
又設(shè),
共線,,
,,同理可求
,過點的切線的斜率為,切線方程為:,
同理得過點的切線方程為:,聯(lián)立得:

,即點Q在定直線上運動.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6,直線與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過如下五個點中的三個點:,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過,是橢圓上的動點且在圓外,過作圓的切線,切點為,當(dāng)的最大值為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時,求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的一個焦點坐標為,則雙曲線的漸近線方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的左頂點的斜率為的直線交橢圓于另一個點,且點軸上的射影恰好為右焦點,若,則橢圓離心率的取值范圍是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的頂點在原點,焦點F與雙曲線的右焦點重合,過點且切斜率為1的直線與拋物線交于兩點,則弦的中點到拋物線準線的距離為_____________________.

查看答案和解析>>

同步練習(xí)冊答案