【題目】過拋物線的焦點F的直線交地物線于點AB(其中點A在第一象限),交其準線l于點C,同時點FAC的中點

1)求直線AB的傾斜角;

2)求線段AB的長.

【答案】1,(2

【解析】

1)由點FAC的中點,結(jié)合拋物線的定義可得點A的坐標,由此可得直線的AB斜率,從而可求出直線AB的傾斜角;

2)將直線方程和拋物線方程聯(lián)立成方程組求出點B的坐標,再拋物線的焦點弦公式可求得AB的長.

解:(1)由題可知,準線l的方程為,

設(shè)AB在準線上的投影分別為,準線與軸交于點,則,

因為FAC的中點,所以,

所以點A的橫坐標為3,

時,,由于點A在第一象限,

所以點A的坐標為,

設(shè)直線AB的傾斜角為,則,

因為,所以,

2)直線AB的方程為

,得

解得,

所以點B的橫坐標為

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個極值點,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,曲線關(guān)于對稱.

(1)求極坐標方程,直角坐標方程;

(2)將向左平移4個單位長度,按照變換得到與兩坐標軸交于兩點,上任一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得晉級

1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;

2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為晉級的概率;

3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到晉級選手的總?cè)藬?shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,ADCDOAC的中點,EBD的中點.

(1)證明:DO⊥底面ABC

(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于正整數(shù),若存在1,2,…,的一個排列滿足

),則稱為“循球數(shù)”.證明:

(1)9、11都是循環(huán)數(shù);

(2)為循環(huán)數(shù)的一個必要不充分條件是為質(zhì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A.命題,,則

B.,則的逆命題為真命題

C.為真命題,則為假命題

D.王昌齡《從軍行》中兩句詩黃沙百戰(zhàn)穿金甲,不破樓蘭終不還,后一句中攻破樓蘭回到家鄉(xiāng)的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),()是任意的和為正數(shù)的個不同的實數(shù),(.)是這個數(shù)的一個排列.若對任意的,,則稱()是一個“好排列”.求好排列個數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案