5.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x+2}}}+{(x-1)^0}$的定義域?yàn)镸,g(x)=ln(2-x)的值域?yàn)镹,則M∩N=( 。
A.{x|x>-2}B.{x|x<2}C.{x|-2<x<2}D.{x|x>-2,x≠1}

分析 求出f(x)的定義域確定出M,求出g(x)的值域確定出N,找出兩集合的交集即可.

解答 解:由f(x)=$\frac{1}{\sqrt{x+2}}$+(x-1)0,得到x+2>0,且x-1≠0,
解得:x>-2且x≠1,即M={x|x>-2,且x≠1},
由g(x)=ln(2-x),得到N=R,
則M∩N={x|x>-2,x≠1},
故選:D.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)在復(fù)平面內(nèi)復(fù)數(shù)z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i對應(yīng)的四點(diǎn)是否在同一個圓上,并證明你的結(jié)論;
(2)實(shí)數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn)位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機(jī)抽取了50人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進(jìn)行重點(diǎn)分析,知道其中喜歡看該節(jié)目的有6人.
喜歡看該節(jié)目不喜歡看該節(jié)目合計(jì)
女生5
男生10
合計(jì)50
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)是否有99.5%的把握認(rèn)為喜歡看該節(jié)目節(jié)目與性別有關(guān)?說明你的理由;
(Ⅲ)已知喜歡看該節(jié)目的10位男生中,5位喜歡看新聞,3位喜歡看動畫片,2位喜歡看韓劇,現(xiàn)從喜歡看新聞、動畫片和韓劇的男生中各選出1名進(jìn)行其他方面的調(diào)查,求喜歡看動畫片的男生甲和喜歡看韓劇的男生乙不全被選中的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①當(dāng)K2≥3.841時有95%的把握認(rèn)為ξ、η有關(guān)聯(lián);
②當(dāng)K2≥6.635時有99%的把握認(rèn)為ξ、η有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow{a}$+$\overrightarrow$|等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=(a2+1)x-3(a2+1)y的最小值是-20,則實(shí)數(shù)a=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列程序語句正確的是( 。
A.輸出語句PRINT A=4B.輸入語句  INPUT x=3
C.賦值語句 A=A*A+A-3D.賦值語句  55=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y2=mx的焦點(diǎn)為(-1,0),則m=(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在邊長為8的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=x3-$\frac{1}{2}$x2-2x+5,若至少存在一個x0∈[-1,2]時,f(x0)<m成立,則實(shí)數(shù)m的取值范圍是m>$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案