【題目】如圖,已知三棱錐中,平面平面ABC,,,BD=3,AD=1,AC=BC,M為線段AB的中點.
(Ⅰ)求證:平面ACD;
(Ⅱ)求異面直線MD與BC所成角的余弦值;
(Ⅲ)求直線MD與平面ACD所成角的余弦值.
【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可得,結(jié)合,和線面垂直的判定定理即可證得題中的結(jié)論;
(Ⅱ)取AC中點N,連接MN,DN,易知(或其補(bǔ)角)為異面直線MD與BC所成的角,據(jù)此結(jié)合幾何性質(zhì)可得異面直線MD與BC所成角的余弦值.
(Ⅲ)結(jié)合(Ⅱ)可知為直線MD與平面ACD所成的角,據(jù)此可得線面角的余弦值.
(Ⅰ)∵平面平面ABC于AB,,平面ABD,
∴平面ABC,
∴,又,,
∴平面ACD.
(Ⅱ)取AC中點N,連接MN,DN,
∵M是AB中點,
∴,
∴(或其補(bǔ)角)為異面直線MD與BC所成的角,
由(Ⅰ)知平面ACD,
∴平面ACD,,
在中,,,
∴,
即異面直線MD與BC所成角的余弦值為.
(Ⅲ)由(Ⅱ)為直線MD與平面ACD所成的角,在中,,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)a=1時,求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個不同的零點,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一棟6層樓房里,每個房間的門牌號均為三位數(shù),首位代表樓層號,后兩位代表房間號,如218表示的是第2層第18號房間,現(xiàn)已知有寶箱藏在如下圖18個房間里的某一間,其中甲同學(xué)只知道樓層號,乙同學(xué)只知道房間號,不知道樓層號,現(xiàn)有以下甲乙兩人的一段對話:
甲同學(xué)說:我不知道,你肯定也不知道;
乙同學(xué)說:本來我也不知道,但是現(xiàn)在我知道了;
甲同學(xué)說:我也知道了.
根據(jù)上述對話,假設(shè)甲乙都能做出正確的推斷,則藏有寶箱的房間的門牌號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(I)討論的單調(diào)性;
(II)若恒成立,證明:當(dāng)時,.
(III)在(II)的條件下,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線不與坐標(biāo)軸垂直,且與拋物線有且只有一個公共點.
(1)當(dāng)點的坐標(biāo)為時,求直線的方程;
(2)設(shè)直線與軸的交點為,過點且與直線垂直的直線交拋物線于,兩點.當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,設(shè)命題函數(shù)在R上單調(diào)遞減,命題對任意實數(shù)x,不等式恒成立.
(1)求非q為真時,實數(shù)c的取值范圍;
(2)如果命題為真命題,且為假命題,求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com