14.在平面直角坐標(biāo)系中.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-5+\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫(xiě)出直線l和曲線C的普通方程;
(2)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最大值.

分析 (1)消去參數(shù)t得普通方程為y=x+4,根據(jù)極坐標(biāo)公式進(jìn)行轉(zhuǎn)化即可得C的普通方程.
(2)求出圓的標(biāo)準(zhǔn)方程,利用直線和圓的位置關(guān)系進(jìn)行求解即可.

解答 解:(1)消去參數(shù)t得普通方程為y=x+4,
由ρ=4cosθ得ρ2=4ρcosθ,由$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,以及x2+y22,得x2+y2=4x.
(2)由x2+y2=4x得(x-2)2+y2=4得圓心坐標(biāo)為(2,0),半徑R=2,
則圓心到直線的距離d=$\frac{|2-0+4|}{\sqrt{2}}$=3$\sqrt{2}$.
則P到直線l的距離的最大值是3$\sqrt{3}$+2.

點(diǎn)評(píng) 本題主要考查參數(shù)方程,極坐標(biāo)方程和普通方程之間的轉(zhuǎn)化,以及直線和圓的位置關(guān)系的應(yīng)用.根據(jù)條件轉(zhuǎn)化為普通方程是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若向量$\overrightarrow{BA}$=(1,2),$\overrightarrow{CA}$=(4,5),且$\overrightarrow{CB}$•(λ$\overrightarrow{BA}$+$\overrightarrow{CA}$)=0,則實(shí)數(shù)λ的值為( 。
A.3B.-$\frac{9}{2}$C.-3D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四式不能化簡(jiǎn)為$\overrightarrow{AD}$的是(  )
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則關(guān)于x的不等式x•f′(x)>0的解集為(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知命題p:實(shí)數(shù)x滿(mǎn)足${x^2}-2x-8≤C_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n$;命題q:實(shí)數(shù)x滿(mǎn)足|x-2|≤m(m>0).
(1)當(dāng)m=3時(shí),若“p且q”為真,求實(shí)數(shù)x的取值范圍;
(2)若“非p”是“非q”的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,點(diǎn)A,B,D,E在⊙O上,ED、AB的延長(zhǎng)線交于點(diǎn)C,AD、BE交于點(diǎn)F,AE=EB=BC.
(1)證明:$\widehat{DE}$=$\widehat{BD}$;
(2)若DE=2,AD=4,求DF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x-alnx+$\frac{x}$在x=1處取得極值.
(1)求a與b滿(mǎn)足的關(guān)系式;
(2)若a∈R,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a>3,函數(shù)g(x)=a2x2+3,若存在m1,m2∈[$\frac{1}{2}$,2],使得|f(m1)-g(m2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)隨機(jī)事件A,B的對(duì)立事件為$\overline{A}$,$\overline{B}$,且P(A)P(B)≠0,則下列說(shuō)法錯(cuò)誤的是(  )
A.若A和B獨(dú)立,則$\overline{A}$和$\overline{B}$也一定獨(dú)立B.若P(A)+P($\overline{B}$)=0.2,則P($\overline{A}$)+P(B)=1.8
C.若A和B互斥,則必有P(A|B)=P(B|A)D.若A和B獨(dú)立,則必有P(A|B)=P(B|A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,已知$\overrightarrow{CD}=2\overrightarrow{BD}$,若$\overrightarrow{AD}=λ\overrightarrow{AB}+u\overrightarrow{AC}$,λ,u∈R,則λu=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案