精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax3+bx2+cx+d在x=0處取得極值,且過原點,曲線y=f(x)在P(-1,2)處的切線l的斜率是-3
(1)求f(x)的解析式;
(2)若y=f(x)在區(qū)間[2m-1,m+1]上是增函數,數m的取值范圍;
(3)若對任意x1,x2∈[-1,1],不等式|f(x1)-f(x2)|≤m恒成立,求m的最小值.
分析:(1)由函數圖象過原點求出d的值,由f(0)=0求出c的值,再由曲線y=f(x)在P(-1,2)處的切線l的斜率是-3,列關于a,b的方程組,解方程組求解a,b的值,則函數解析式可求;
(2)求出函數的導函數,由導函數的符號判斷函數的單調區(qū)間,根據y=f(x)在區(qū)間[2m-1,m+1]上是增函數,說明區(qū)間[2m-1,m+1]是求出的函數增區(qū)間的子集,由集合的關系分類列關于m的不等式組,則m的取值范圍可求;
(3)利用函數的單調性求出函數f(x)在區(qū)間[-1,1]內的最值,對任意x1,x2∈[-1,1],|f(x1)-f(x2)|恒小于等于最大值與最小值差的絕對值,由此可以求得使不等式|f(x1)-f(x2)|≤m恒成立的m的最小值.
解答:解:(1)∵曲線y=f(x)過原點,∴d=0.
由f(x)=ax3+bx2+cx+d,得:f'(x)=3ax2+2bx+c,
又x=0是f(x)的極值點,∴f'(0)=0,∴c=0,
∵過點P(-1,2)的切線l的斜率為f'(-1)=3a-2b,
f(-1)=2
f(-1)=-3
,得:
-a+b=2
3a-2b=-3
,解得:
a=1
b=3

故f(x)=x3+3x2;
(2)f'(x)=3x2+6x=3x(x+2),
令f'(x)>0,即x(x+2)>0,∴x>0或x<-2
∴f(x)的增區(qū)間為(-∞,-2]和[0,+∞).
∵f(x)在區(qū)間[2m-1,m+1]上是增函數,∴[2m-1,m+1]⊆(-∞,-2]或[2m-1,m+1]⊆[0,+∞);   
m+1≤-2
2m-1<m+1
2m-1≥0
2m-1<m+1

解得:m≤-3或
1
2
≤m<2
;
(3)由(2)知,函數f(x)在[-1,0]上為減函數,在(0,1]上為增函數.
∵f(0)=0,f(-1)=2,f(1)=4,∴f(x)在區(qū)間[-1,1]上的最大值M為4,最小值N為0,
故對任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤M-N=4-0=4,
要使對任意x1,x2∈[-1,1],不等式|f(x1)-f(x2)|≤m恒成立,則m≥4.
所以,m最小值為4.
點評:本題考查了函數解析式的常用求法,考查了函數在某點處取得極值的條件,注意的是極值點處的導數等于0,考查了函數在某點處切線的斜率與該點處導數的關系,函數在某一區(qū)間內任意兩點的函數值的差的絕對值,一定小于等于函數在該區(qū)間內最大值與最小值差的絕對值.此題是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案