【題目】己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項(xiàng)和.

1)若11,求的值;

2若首項(xiàng),是正整數(shù),滿足不等式|63|62對于任意正整數(shù)都成立,問:這樣的數(shù)列有幾個(gè)?

【答案】1;(2114

【解析】

(1)利用等比數(shù)列的求和公式,進(jìn)而可求的值;

(2)根據(jù)滿足不等式|﹣63|<62,可確定的范圍,進(jìn)而可得隨著的增大而增大,利用,可求解.

(1)已知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項(xiàng)和,=1,

,

;

(2) 滿足不等式|﹣63|<62,

, ,且,

,得隨著的增大而增大,得

又且對于任意正整數(shù)都成立,得,,且是正整數(shù),

滿足的個(gè)數(shù)為:124﹣11+1=114個(gè),即有114個(gè),所以有114個(gè)數(shù)列

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,點(diǎn)到拋物線的準(zhǔn)線的距離為.點(diǎn)上的定點(diǎn),上的兩動(dòng)點(diǎn),且線段的中點(diǎn)在直線.

(Ⅰ)求曲線的方程及的值;

(Ⅱ)記,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)曲線相交于兩點(diǎn),求過兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),集合),對于集合中的任意元素,記.

1)當(dāng)時(shí),若,,求的值;

2)當(dāng)時(shí),設(shè)的子集,且滿足:對于中的任意元素、,當(dāng)相同時(shí),是奇數(shù),當(dāng)、不同時(shí),是偶數(shù),求集合中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:為自然對數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題方程表示焦點(diǎn)在軸上的橢圓,命題雙曲線的離心率,若“”為假命題,“”為真命題,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),圓Cx2y28y0,過點(diǎn)P的動(dòng)直線l與圓C交于AB兩點(diǎn),線段AB的中點(diǎn)為MO為坐標(biāo)原點(diǎn).

(1)M的軌跡方程;

(2)當(dāng)|OP||OM|時(shí),求l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e2

查看答案和解析>>

同步練習(xí)冊答案