若點P在以F1,F2為焦點的橢圓上,PF2F1F2,,則橢圓的離心率為___________
因為,所以在中,因為,所以。因為點在橢圓上,所以。由可得,,化簡可得,解得(舍),故
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中心在原點,且經(jīng)過定點,其一個焦點與拋物線的焦點重合,則該橢圓的方程為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
上的兩點,
滿足,橢圓的離心率短軸長為2,0為坐標原點.
(1)求橢圓的方程;
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在雙曲線中,,且雙曲線與橢圓有公共焦點,則雙曲線的方程是(         )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的左焦點,是橢圓短軸上的一個頂點,橢圓的離心率為,點軸上,三點確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過作斜率為的直線交橢圓于兩點,為線段的中點,設為橢圓中心,射線交橢圓于點,若,若存在求的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的長軸長為4,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)設分別為橢圓C:的左右兩個焦點,橢圓上的點)到兩點的距離之和等于4,設點。
(1)求橢圓的方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,已知橢圓焦點為,雙曲線,設是雙曲線異于頂點的任一點,直線與橢圓的交點分別為
1.      設直線的斜率分別為,求的值;
2.      是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,請說明理由。
3.       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2, 2),且
(I )求橢圓E的方程;
(II)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

查看答案和解析>>

同步練習冊答案