8.記函數(shù)f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域為集合A,函數(shù)g(x)=$\frac{k-1}{x}$圖象在二、四象限時,k的取值集合為B,函數(shù)h(x)=x2+2x+4的值域為集合C.
(1)求集合A,B,C.
(2)求集合A∪(∁RB),A∩(B∪C).

分析 (1)求出f(x)的定義域確定出A,利用反比例函數(shù)性質(zhì)求出k的范圍確定出B,利用二次函數(shù)性質(zhì)求出h(x)的定義域確定出C即可;
(2)求出A與B補集的并集,A與B、C并集的交集即可.

解答 解:(1)由f(x)=$\frac{1}{\sqrt{2x-3}}$,得到2x-3>0,
解得:x>$\frac{3}{2}$,即A=($\frac{3}{2}$,+∞);
由g(x)=$\frac{k-1}{x}$圖象在第二、四象限,得到k-1<0,
解得:k<1,即B=(-∞,1);
由函數(shù)h(x)=x2+2x+4=(x+1)2+3≥3,得到C=[3,+∞);
(2)∵A=($\frac{3}{2}$,+∞),B=(-∞,1),C=[3,+∞),
∴∁RB=[1,+∞),B∪C=(-∞,1)∪[3,+∞),
則A∪(∁RB)=($\frac{3}{2}$,+∞),A∩(B∪C)=[3,+∞).

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)向量$\overrightarrow{a}$=(m,-1),$\overrightarrow$=(1,2),若$\overrightarrow{a}⊥\overrightarrow$,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.運行如圖所示程序框圖,輸出的S的值等于14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知z是復(fù)數(shù),z-3i為實數(shù),$\frac{z-5i}{2-i}$為純虛數(shù)(i為虛數(shù)單位).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)求$\frac{z}{1-i}$的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且當(dāng)x=$\frac{π}{6}$時,f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的圖象(要列表);
(2)將函數(shù)f(x)的圖象向右平移m(m>0)個單位長度后得到函數(shù)y=g(x)的圖象,且y=g(x)是偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,最小正周期為π且圖象關(guān)于y軸對稱的函數(shù)是(  )
A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖,則該幾何體的體積為(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.3π+$\frac{9}{2}$B.3π+6C.5π+$\frac{9}{2}$D.5π+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lnx}|\;,x>0\\{x^2}+2x-1,x≤0.\end{array}$若f(x)的圖象與直線y=ax-1有且只有三個公共點,則實數(shù)a的取值范圍是(0,2).

查看答案和解析>>

同步練習(xí)冊答案