分析 (1)由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,用五點法作函數(shù)y=Asin(ωx+φ)在一個周期上的圖象.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的奇偶性,求得m的最小值.
解答 解:(1)因為函數(shù)f(x)的最小正周期是π,所以ω=2.
又因為$x=\frac{π}{6}$時,f(x)取得最大值2.所以A=2,
同時$2×\frac{π}{6}+α=2kπ+\frac{π}{2},k∈Z$,$α=2kπ+\frac{π}{6},k∈Z$,∵$-\frac{π}{2}<α<\frac{π}{2}$∴$α=\frac{π}{6}$,
∴函數(shù)y=f(x)的解析式$f(x)=2sin(2x+\frac{π}{6})$.
∵x∈[0,π],∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{13π}{6}]$,列表如下:
$2x+\frac{π}{6}$ | $\frac{π}{6}$ | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π | $\frac{13π}{6}$ |
x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ | x |
f(x) | 1 | 2 | 0 | -2 | 0 | 1 |
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,用五點法作函數(shù)y=Asin(ωx+φ)在一個周期上的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的奇偶性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com