5.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lnx}|\;,x>0\\{x^2}+2x-1,x≤0.\end{array}$若f(x)的圖象與直線y=ax-1有且只有三個公共點,則實數(shù)a的取值范圍是(0,2).

分析 作出函數(shù)f(x)的圖象,求出函數(shù)在(0,-1)處的切線斜率,利用數(shù)形結(jié)合建立不等式關(guān)系即可.

解答 解:作出函數(shù)f(x)的圖象如圖:
y=ax-1過定點(0,-1),
要使f(x)的圖象與直線y=ax-1有且只有三個公共點,
則a>0,
當x≤0時,f(x)=x2+2x-1,
函數(shù)的導(dǎo)數(shù)f′(x)=2x+2,函數(shù)在點(0,-1)處的切線斜率
k=f′(0)=2,
此時直線和f(x)=x2+2x-1只有一個交點,
由圖象知要使f(x)的圖象與直線y=ax-1有且只有三個公共點,
則滿足0<a<2,
故答案為:(0,2)

點評 本題主要考查分段函數(shù)的應(yīng)用以及函數(shù)與方程的交點個數(shù)問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.記函數(shù)f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域為集合A,函數(shù)g(x)=$\frac{k-1}{x}$圖象在二、四象限時,k的取值集合為B,函數(shù)h(x)=x2+2x+4的值域為集合C.
(1)求集合A,B,C.
(2)求集合A∪(∁RB),A∩(B∪C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在直三棱柱ABC-A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分別是CC1,AB1的中點. 
(Ⅰ)證明:EM∥平面ABC;
(Ⅱ)求直線A1E與平面AEB1所成角的正弦值;
(Ⅲ)求二面角B-EM-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三棱錐S-ABC及其三視圖中的正視圖與側(cè)視圖如圖所示,若三棱錐S-ABC的四個頂點都在同一個球面上,則該球的表面積為(  )
A.84πB.72πC.60πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,若該幾何體的體積為64+16π,則實數(shù)a等于( 。
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知三棱錐的三視圖的正視圖是等腰三角形,俯視圖是邊長為$\sqrt{3}$的等邊三角形,側(cè)視圖是直角三角形,且三棱錐的外接球表面積為8π,則三棱錐的高為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖是某幾何體的三視圖,正視圖是等邊三角形,側(cè)視圖和俯視圖為直角三角形,則該幾何體外接球的表面積為( 。
A.$\frac{20π}{3}$B.C.D.$\frac{19π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一空間幾何體的三視圖如圖所示,該幾何體的體積為12π+$\frac{{8\sqrt{5}}}{3}$,則該幾何體的表面積的值為( 。
A.20π-8+4$\sqrt{14}$B.20π+2$\sqrt{14}$C.20π-8+2$\sqrt{14}$D.20π+4$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=4sin(ωx-$\frac{π}{4}$)•cosωx在x=$\frac{π}{4}$處取得最值,其中ω∈(0,2).
(1)求函數(shù)f(x)的最小正周期;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{36}$個單位,再將所得圖象上各點的橫坐標伸長為原來的3倍,縱坐標不變,得到函數(shù)g(x)的圖象,若方程g(x)+k=0在[0,π]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案