已知點是雙曲線的左焦點,點是該雙曲線的右頂點,過且垂直于軸的直線與雙曲線交于、兩點,若是銳角三角形,則該雙曲線的離心率的取值范圍是( ).
A. | B. | C. | D. |
B
解析試題分析:根據(jù)雙曲線的對稱性,
得△ABE中,|AE|=|BE|,∴△ABE是銳角三角形,即∠AEB為銳角,由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|,∵|AF|=,|EF|=a+c,∴<a+c,即2a2+ac-c2>0,兩邊都除以a2,得e2-e-2<0,解之得-1<e<2,∵雙曲線的離心率e>1,∴該雙曲線的離心率e的取值范圍是(1,2),故選B
考點:本題考查了雙曲線離心率的求法
點評:雙曲線過一個焦點的通徑與另一個頂點構(gòu)成銳角三角形,求雙曲線離心率的范圍,著重考查了雙曲線的標(biāo)準方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)斜率為2的直線過拋物線的焦點F,且和軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4, 則拋物線方程為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若拋物線頂點為坐標(biāo)原點,對稱軸為x軸,焦點在3x-4y-12=0上,那么拋物線方程是( )
A.y=16x | B.y=-16x | C.y=12x | D.y=-12x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,點A、B、C在數(shù)軸上,點B、C關(guān)于點A對稱,若點A、B對應(yīng)的實數(shù)分別是和-1,則點C所對應(yīng)的實數(shù)是
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
從雙曲線的左焦點引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標(biāo)原點,則與的大小關(guān)系為( )
A. | B. |
C. | D.不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知和分別是雙曲線(,)的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則該雙曲線的離心率為( )
A. | B. | C.2 | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com