若函數(shù)f(x)的圖象與y=2x的圖象關(guān)于
 
對(duì)稱(chēng),則函數(shù)f(x)=
 
.(注:填上你認(rèn)為正確的一種情形即可,不必考慮所有可能的情形)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題是研究?jī)蓚(gè)底數(shù)互為倒數(shù)的函數(shù)的圖象之間的關(guān)系,在指數(shù)型函數(shù)中,如果兩個(gè)函數(shù)的底數(shù)互為倒數(shù),則這兩個(gè)函數(shù)的圖象關(guān)于y對(duì)稱(chēng).
解答: 解:由于y=2-x=(
1
2
)
x
,
故與其圖象關(guān)于y軸對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)的解析式為y=2x
故答案為:y軸,2-x
點(diǎn)評(píng):本題考點(diǎn)是指數(shù)函數(shù)的圖象,考查兩個(gè)底數(shù)互為倒數(shù)的函數(shù)圖象的對(duì)稱(chēng)性,本題考查函數(shù)中的一個(gè)結(jié)論,適用范圍較窄,屬于較偏頗的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三年級(jí)有400人,在省標(biāo)準(zhǔn)化考試中,用簡(jiǎn)單隨機(jī)抽樣的方法抽取容量為50的樣本,得到數(shù)學(xué)成績(jī)的頻率分布直方圖(如圖).
(1)求第四個(gè)小矩形的高;
(2)估計(jì)該校高三年級(jí)在這次考試中數(shù)學(xué)成績(jī)?cè)?20分以上的學(xué)生大約有多少人?
(3)樣本中,已知成績(jī)?cè)赱140,150]內(nèi)的學(xué)生中有三名女生,現(xiàn)從成績(jī)?cè)赱140,150]內(nèi)的學(xué)生中選取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)推廣交流,設(shè)有X名女生被選取,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-48n+1
(1)求數(shù)列的通項(xiàng)公式;       
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
2
an+2
+
an
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,an+1=an+2,則數(shù)列{an}是(  )
A、遞增數(shù)列B、遞減數(shù)列
C、常數(shù)列D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

找規(guī)律:
1
2   3   4
5   6   7   8   9
10  11  12  13  14   15   16

2015出現(xiàn)在第
 
行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=4x2關(guān)于直線x-y=0對(duì)稱(chēng)的拋物線的準(zhǔn)線方程是( 。
A、y=-1
B、y=-
1
16
C、x=-1
D、x=-
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知船在靜水中的速度為20m/min,水流的速度為10m/min,如果船從岸邊出發(fā)沿垂直于水流的航線到達(dá)對(duì)岸,求船行進(jìn)的方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|
x
-ax-b|,a,b∈R.
(1)當(dāng)a=0,b=1時(shí),寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
1
2
時(shí),記函數(shù)f(x)在區(qū)間[0,4]上的最大值為g(b),當(dāng)b變化時(shí),求g(b)的最小值;
(3)若對(duì)任意實(shí)數(shù)a,b,總存在實(shí)數(shù)x0∈[0,4]使得不等式f(x0)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案