3.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=xB.y=$\frac{1}{x}$C.y=-x3D.y=($\frac{1}{2}$)x

分析 根據(jù)函數(shù)的奇偶性定義和單調(diào)區(qū)間判斷.

解答 解:y=x斜率為1,在定義域R上是增函數(shù);
y=$\frac{1}{x}$在(-∞,0)和(0,+∞)上均是減函數(shù),但當(dāng)x<0時(shí),y<0,當(dāng)x>0時(shí),y>0,故y=$\frac{1}{x}$在定義域上不是減函數(shù).
($\frac{1}{2}$)-x=2x≠±($\frac{1}{2}$)x,故y=($\frac{1}{2}$)x為非奇非偶函數(shù),
故選:C.

點(diǎn)評(píng) 本題考查了基本初等函數(shù)的奇偶性和單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l1:ax-y+1=0與l2:x+ay+1=0(a∈R),給出如下結(jié)論:
①不論a為何值時(shí),l1與l2都互相垂直;
②當(dāng)a變化時(shí),l1與l2分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);
③不論a為何值時(shí),l1與l2都關(guān)于直線x+y=0對(duì)稱;
④不存在a的值,使l1與l2平行或重合.
其中所有正確的結(jié)論的序號(hào)為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,在定義域內(nèi)單調(diào)遞增,且在區(qū)間(-1,1)內(nèi)有零點(diǎn)的函數(shù)是( 。
A.y=log${\;}_{\frac{1}{2}}$xB.y=2x-1C.$y={x^2}-\frac{1}{2}$D.y=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊經(jīng)過點(diǎn)P(-3,-4),則sinα=( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在正方體ABCD-A1B1C1D1中,AA1=2,E為AA1的中點(diǎn),O是BD1的中點(diǎn).
(Ⅰ)求證:平面A1BD1⊥平面ABB1A1;
(Ⅱ)求證:EO∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.2012年全國(guó)中學(xué)生機(jī)器人大賽選選拔賽中,機(jī)器人剛開始在原點(diǎn)位置,為了讓機(jī)器人完成某項(xiàng)任務(wù),學(xué)生給機(jī)器人設(shè)置了以下指令:先逆時(shí)針旋轉(zhuǎn)α角,然后向前進(jìn)1米,將該指令進(jìn)行一次稱為一次操作,試用向量解決以下問題.
(1)當(dāng)α=$\frac{π}{3}$時(shí),經(jīng)過幾次操作才能回到原點(diǎn)?
(2)是否存在α,使機(jī)器人經(jīng)過10次操作,能首次回到原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow{0}$,則|QF|=(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若sinθ=$\frac{k+1}{k-3}$,cosθ=$\frac{k-1}{k-3}$,且θ的終邊不落在坐標(biāo)軸上,則tanθ的值為(  )
A.$\frac{3}{4}$B.$\frac{3}{4}$或0C.0D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{OP}$=(2cosx+1,cos2x-sinx+1),$\overrightarrow{OQ}$=(cosx,-1),定義f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案