【題目】【選修4﹣1幾何證明選講】
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
【答案】
(1)證明:∵CD為△ABC外接圓的切線,∴∠DCB=∠A,
∵BCAE=DCAF,∴ .
∴△CDB∽△AEF,∴∠CBD=∠AFE.
∵B、E、F、C四點(diǎn)共圓,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.
∴∠CBA=90°,∴CA是△ABC外接圓的直徑
(2)解:連接CE,∵∠CBE=90°,
∴過B、E、F、C四點(diǎn)的圓的直徑為CE,由DB=BE,得CE=DC,
又BC2=DBBA=2DB2,
∴CA2=4DB2+BC2=6DB2.
而DC2=DBDA=3DB2,
故過B、E、F、C四點(diǎn)的圓的面積與△ABC面積的外接圓的面積比值= =
【解析】(1)已知CD為△ABC外接圓的切線,利用弦切角定理可得∠DCB=∠A,及BCAE=DCAF,可知△CDB∽△AEF,于是∠CBD=∠AFE.
利用B、E、F、C四點(diǎn)共圓,可得∠CFE=∠DBC,進(jìn)而得到∠CFE=∠AFE=90°即可證明CA是△ABC外接圓的直徑;(2)要求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.只需求出其外接圓的直徑的平方之比即可.由過B、E、F、C四點(diǎn)的圓的直徑為CE,及DB=BE,可得CE=DC,利用切割線定理可得DC2=DBDA,CA2=CB2+BA2 , 都用DB表示即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于的不等式恰好有4個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到定點(diǎn)的距離和它到直線的距離的比值為常數(shù),記動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相交于不同的兩點(diǎn), ,直線與曲線相交于不同的兩點(diǎn) ,且,求以, , , 為頂點(diǎn)的凸四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的方程;
(2)設(shè), 是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連接交橢圓于另一點(diǎn),證明直線與軸相交于定點(diǎn);
(3)在(2)的條件下,過點(diǎn)的直線與橢圓交于, 兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,⊥底面,是的中點(diǎn).
已知,,,.求:
(1)三棱錐PABC的體積;
(2)異面直線BC與AD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,,且,數(shù)列滿足,,其前9項(xiàng)和為63.
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,數(shù)列的前n項(xiàng)和為,若對任意正整數(shù)n,都有,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名運(yùn)動員的5次測試成績?nèi)缦聢D所示:
甲 | 莖 | 乙 |
5 7 | 1 | 6 8 |
8 8 2 | 2 | 3 6 7 |
設(shè)s1 , s2分別表示甲、乙兩名運(yùn)動員測試成績的標(biāo)準(zhǔn)差, 分別表示甲、乙兩名運(yùn)動員測試成績的平均數(shù),則有( )
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com