【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)

(1)當(dāng)t4時(shí),求s的值;

(2)st變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;

(3)N城位于M地正南方向,且距M650 km,試判斷這場沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會(huì),請說明理由.

【答案】(1)24;(2);(3)沙塵暴發(fā)生30 h后將侵襲到N城.

【解析】試題分析:(1)先求出線段OA的解析式為v=4t,然后把t=10直接代入求出此時(shí)的速度,即可求出St)的值;(2)先分段求出速度v與時(shí)間t的函數(shù)函數(shù)關(guān)系,再分別乘以時(shí)間即可求得對(duì)應(yīng)的函數(shù)St)的解析式;(3)先由分段函數(shù)的解析式以及對(duì)應(yīng)的定義域可以求得其最大值,發(fā)現(xiàn)其最大值大于650,即可下結(jié)論會(huì)侵襲到N城,再把St=650代入即可求出對(duì)應(yīng)的t

試題解析:解:(1)由圖像可知,當(dāng)t4時(shí),v3×412

所以S×4×1224 km

2)當(dāng)0≤t≤10時(shí),S·t·3t;

當(dāng)10<t≤20時(shí),S×10×3030t10)=30t150;

當(dāng)20<t≤35時(shí),S×10×3010×30+(t20×30×t20×2t20)=

綜上可知,

3)因?yàn)楫?dāng)t[0,10]時(shí),Smax×102150<650

當(dāng)t∈10,20]時(shí),Smax30×20150450<650,

所以當(dāng)t20,35]時(shí),令,解得.因?yàn)?/span>20<t≤35,所以t30

故沙塵暴發(fā)生30 h后將侵襲到N城.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的函數(shù),且對(duì)任意都有 ,且滿足,,則=

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的一個(gè)焦點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn) 的面積為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若,過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn)線段的垂直平分線與軸交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大。
(2)若sinB+sinC=1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+cx(a>0),其圖象在點(diǎn)(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導(dǎo)函數(shù)
f′(x)的最小值為﹣12.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的左焦點(diǎn),且斜率為的直線交橢圓于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:

網(wǎng)購金額

(單位:千元)

頻數(shù)

頻率

3

9

15

18

合計(jì)

60

若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達(dá)人”與“網(wǎng)購探者”人數(shù)的比例為.

(1)確定,,的值,并補(bǔ)全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4﹣1幾何證明選講】
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.

(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語句為(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

同步練習(xí)冊答案